期刊文献+

Bézier曲线约束降多阶算法的分析与比较 被引量:3

Analysis and comparison of algorithms for multi-degree reduction with constrained Bézier curves
下载PDF
导出
摘要 为了顺利进行产品外形数据的压缩与传递,分析和比较了L2范数下Bézier曲线带高阶端点插值条件的降多阶算法.基于工程的应用需要,对有代表性的4种算法,从理论机理、误差预测、表达形式、逼近精度、机时消耗5个方面作了系统的剖析与对比,并通过大量实例对算法效果进行了比较,找到了一种能够预报误差、显式表示、精度最高、机时最省的最佳算法. The algorithms of multi-degree reduction of Bézier curves with constraints of high degree endpoints continuity in L2-norm were investigated to guarantee the compression and communication of product model data.Based on the engineering practical needs,four typical algorithms published in the international journals these years,were roundly analyzed and compared according to their theoretical mechanism,error forecast,expression form,approximation accuracy and computing time.Also numerical tests were carried out...
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第11期1805-1809,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60673031 60333010) 国家"973"重点基础研究发展规划资助项目(2004CB719400)
关键词 算法比较 BÉZIER曲线 降多阶 端点约束 L2范数 algorithm comparison Bézier curve multi-degree reduction endpoint constraint L2-norm
  • 相关文献

参考文献9

  • 1[1]HU Shi-min,SUN Jia-guang,JIN Tong-guang,et al.Approximate degree reduction of Bézier curves[J].Tsinghua Science and Technology,1998,3(2):997-1000.
  • 2[3]ECK M.Least squares degree reduction[J].Computer Aided Design,1995,27(11):845-851.
  • 3[4]LUTTERKORT D,PETERS J,REIF U.Polynomial degree reduction in L2-norm equals best Euclidean approximation of Bézier coefficients[J].Computer Aided Geometric Design,1999,16(7):607-612.
  • 4[5]CHEN Guo-dong,WANG Guo-jin.Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity[J].Computer Aided Geometric Design,2002,19(6):365-377.
  • 5[6]ZHENG Jian-min,WANG Guo-zhou.Perturbing Bézier coefficients for best constrained degree reduction in the L2-norm[J].Graphical Models,2003,65(6):351-368.
  • 6[7]AHN Y J,LEE B G,PARK Y,et al.Constrained polynomial degree reduction in the L2-norm equals best weighted Enclidean approximation of coefficients[J].Computer Aided Geometric Design,2004,21(2):181-191.
  • 7ZHANG Renjiang,WANG Guojin.Constrained Bézier curves' best multi-degree reduction in the L_2-norm[J].Progress in Natural Science:Materials International,2005,15(9):843-850. 被引量:20
  • 8[9]SUNWOO H.Matrix representation for multi-degree reduction of Bézier curves[J].Computer Aided Geometric Design,2005,22(3):261-273.
  • 9[10]ZHANG Ren-jiang,WANG Guo-jin.A note on the paper in CAGD (2004,21(2),181-191)[J].Computer Aided Geometric Design,2005,22(9):815-817.

共引文献19

同被引文献47

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部