期刊文献+

蚁群算法的改进及其在TSP问题中的应用 被引量:1

The Improvement of Ant Colony System and Its Application in TSP
下载PDF
导出
摘要 为了克服标准蚁群算法容易陷入局部最优化从而导致算法过早停滞的缺陷,论文引入了城市选择策略的变参数和局部最优搜索策略,同时对信息激素的更新方式提出了相应的改进策略,并应用于对TSP问题的仿真实验.结果表明:改进算法能够加快收敛速度,节省搜索时间,而且能够克服停滞行为的过早出现. The standard ant colony system is easy to fall in local peak in large scale problem.To overcome these deficiencies resulting in the precocity and stagnation,the parameters of the city selective strategy and the local optimization searching strategy are adopted.and the updating strategy of the pheromone is also proposed in this paper.the simulation for the traveling salesman problem(TSP) shows that the improved system can find better path at higher convergence speed,save the search time and overcome the prec...
出处 《湖南工程学院学报(自然科学版)》 2007年第3期5-8,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
关键词 蚁群算法 局部最优搜索策略 信息激素 ant colony system local optimization searching strategy pheromone
  • 相关文献

参考文献5

  • 1[1]M.Dorigo,L.M.Cambardella.Ant Colony System:A Cooperative Learning Approach to the Traveling Saleman Problem[J].IEEE Transactions on Evolutionary Computa-tion,1997:53-66.
  • 2[2]M.Dorigo,V.Maniezzo.Parallel Genetic Algorithms:Introduction and Overview of the Current Research[M].In J.Stender,Editor,Parallel Genetic Algorithms:Theory and Applications,IOS Press,1993.
  • 3[3]M.Dorigo,V.Maniezzo,A.Colorni.The Ant System:Optimization by A Colony of Cooperation Agents[J].IEEE Transactions on SMC,1996,26(1):28-41.
  • 4[4]T.Stutzle,H.H.Hoos.MAX-MIN Ant System.Future Generation Computer Systems[J].2000,16(8):889-914.
  • 5[5]M.Dorigo,G.D.Caro.The Ant Colony Optimization Meta-heuristic.New Ideas in Optimization[J].McGrawHill,1999.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部