期刊文献+

一类具弱阻尼的奇性扰动Boussinesq型方程的位势井方法 被引量:1

Potential Well Method for the Damped Singularly Perturbed Boussinesq-type Equation
下载PDF
导出
摘要 采用位势井方法研究一类具弱阻尼的奇性扰动Boussinesq型方程的初边值问题utt-uxx-αux4-βux6+but=σ(u)xx,x∈Ω,t>0,u(0,t)=u(1,t)=uxx(0,t)=uxx(1,t)=ux4(0,t)=ux4(1,t)=0,t>0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,其中uxi=ixui,σ(s)是一个已知的非线性函数,α和β是两个正的实常数,b≥0是任意实数,Ω=(0,1).得到了相应初边值问题整体广义解的存在唯一性. The initial boundary value problem for the damped singularly perturbed Boussinesq-type equation utt-uxx-αux4-βux6+but=σ(u)xx,x∈Ω,t>0,u(0,t)=u(1,t)=uxx(0,t)=uxx(1,t)=ux4(0,t)=ux4(1,t)=0,t>0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,is studied by the potential well method,where uxi=iuxi,σ(s) is a given nonlinear function,α and β are two positive constants,b≥0 is a real number,and Ω=(0,1).The existence and uniqueness of the global generalized solution to the problem are obtained by the potential well method.
作者 李红 郭基风
出处 《郑州大学学报(理学版)》 CAS 2007年第3期12-17,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省自然科学基金资助项目 编号0611050500
关键词 奇性扰动Boussinesq型方程 初边值问题 位势井方法 singularly perturbed Boussinesq-type equation initial boundary value problem potential well method
  • 相关文献

参考文献9

  • 1[1]Darapi P,Hua W.A numerical method for solving an ill-posed Boussinesq equation arising in water waves and nonlinear lattices[J].Appl Math Comput,1990,101:159-207.
  • 2[2]Dash R K,Darapi P.Analytical and numerical studies of a singularly perturbed Boussinesq equation[J].Appl Math Comput,2002,126(1):1-30.
  • 3[3]Darapi P,Dash R K.Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation[J].Mathematics and Computers in Simulation,2001,55:393-405.
  • 4[4]Feng Zhaosheng.Traveling solitary wave solutions to the generalized Boussinesq equation[J].Wave Motion,2003,37(1):17-23.
  • 5[5]Nakao M,Ono K.Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations[J].Math Z,1993,214(1):325-342.
  • 6[6]Yang Zhijian.Global existence,asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with disspative term[J].J Differential Equations,2003,187(2):520-540.
  • 7[7]Varlamov V.Existence and uniqueness of a solution to the Cauchy problem for the damped Boussinesq equation[J].Mathmatical Methods in Applied Science,1996,19 (8):639-649.
  • 8[8]Admas R A.Sobolev Space[M].New York:Academic Press,1975.
  • 9周毓麟 符鸿源.广义Sine-Gordon型非线性高阶双曲方程组[J].数学学报,1983,(26):234-249.

共引文献2

同被引文献5

  • 1王玉柱,艾麦提.阿依吐热木.“坏”的Boussinesq型方程的初边值问题[J].郑州大学学报(理学版),2007,39(3):18-23. 被引量:1
  • 2Darapi P, Hua W. A numerical method for solving an ill-posed Boussinesq equation arising in water waves and nonlinear lattices[J]. Appl Math Comput, 1999,101 : 159-207.
  • 3Dash R K, Darapi P. Analytical and numerical studies of a singularly perturbed Boussinesq equation [ J ]. Appl Math Comput, 2002,126 : 1-30.
  • 4Darapi P, Dash R K. Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation [ J ]. Mathematics and Computers in Simulation,2001,55:393-405.
  • 5Feng Zhao-sheng. Traveling solitary wave solutions to the generalized Boussinesq equation[ J ]. Wave Motion ,2003,37:17-23.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部