期刊文献+

一种改进的粒子群优化算法 被引量:7

An Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 粒子群算法是一种新型的进化计算方法,已在许多领域得到了广泛的应用,但基本粒子群算法在计算过程中易出现过早收敛现象.为此提出了一种改进的粒子群算法,利用差异演化的思想,当陷入局部极小点时,通过一定的策略迫使粒子群摆脱局部极小点.对经典函数的测试计算,验证了方法的正确性和有效性. Particle swarm optimization(PSO) is a new evolutionary computation method,which has been successfully applied to many fields.But the standard particle swarm optimization is used resulting in premature convergence.An improved particle swarm optimization is presented.Using differential evolution strategy,it can make the solution jump out of the local minimum point.The experimental results of classic functions show that the improved PSO is efficient and feasible.
作者 武志峰 杨蓓
出处 《郑州大学学报(理学版)》 CAS 2007年第3期109-112,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 河北省科技厅科技攻关项目 编号052135149
关键词 粒子群 差异演化 优化 particle swarm differential evolution optimization
  • 相关文献

参考文献10

  • 1[1]Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.Perth,Australia:IEEE,1995:1942-1948.
  • 2[2]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science,1995:39-43.
  • 3瞿高峰,陈淑燕.粒子群优化算法在交通信号配时中的应用[J].广西师范大学学报(自然科学版),2006,24(4):255-258. 被引量:9
  • 4[4]Shi Y H,Eberhart R C.Fuzzy adaptive particle swarm optimization[C]// The IEEE Congress on Evolutionary Computation.San Francisco,USA,2001:101-106.
  • 5[5]Lovbjerg M,Rasmussen T K,Krink T.Hybrid partic le swarm optimizer with breeding and subpopulations[C]//Proceedings of the 3rd Genetic and Evolutionary Computation Conference.San Francisco:Morgan Kaufmann Publishers Inc,2001:469-476.
  • 6[6]Carlisle A,Dozier G.Adapting particle swarm optimization to dynamic environments[C]//Arabnia H R,eds.Proc of Int'l Conf on Artificial Intelligence.Las Vegas:CSREA Press,2000:429-434.
  • 7[7]Angeline P J.Evolutionary computation versus particle swarm optimization:philosophy and performance difference[C]//The Seventh Annual Conference on Evolutionary Programming.San Diego,1998:601-610.
  • 8[8]Jacques R,Vesterstr J S.A diversity-guided particle swarm optimizer--the ARPSO[R]//Technical Report No.2002-02.Aarhus:Department of Computer Science,University of Aarhus,2002.
  • 9杨轻云,孙吉贵,张居阳,王纯杰.稀疏二元约束满足问题的环割集粒子群算法(英文)[J].广西师范大学学报(自然科学版),2006,24(4):135-138. 被引量:1
  • 10赵书军,梅燕,王蓉.一种基于粗集理论的BP神经网络加速算法[J].四川师范大学学报(自然科学版),2002,25(5):479-483. 被引量:11

二级参考文献26

  • 1Pawlak Z. Rough set theory and its application to data analysis[J]. Cybernetics and Systerms,1998,29:112~119.
  • 2Yao Y Y. A comparative study of fuzzy sets and rough sets[J]. Information Science,1998,109:85~92.
  • 3Pawlak Z. Rough set approach to knowledge-based decision support[J]. European J Operational Research,1998,109:21~47.
  • 4Yao Y Y. Constructive and algebraic methods of the theory of rough sets[J]. J Information Sciences,1998,199:47~54.
  • 5胡丹 莫智文.基于规则提取的粗—模糊神经网络及其应用[J].模识别与人工智能,2002,25(1):36-38.
  • 6袁曾任. 人工神经网络及其应用[M]. 北京:清华大学出版社,1992.
  • 7DECHTER R,FROST D.Backtracking algorithms for constraint satisfaction problems[R].Irvine:Informations and Computer Science,University of California,1999.
  • 8BITNER J R,REINGOLD E.Backtrack programming techniques[J].Communications of the ACM,1975,18(11):651-656.
  • 9KONDRAK G,PETER van Beek.A theoretical evaluation of selected backtracking algorithms[J].Artificial Intelligence Journal,1997,89(1/2):365-387.
  • 10KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Press,1995:1942-1948.

共引文献18

同被引文献60

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部