期刊文献+

一种基于Boosting的油田水淹层识别算法

A boosting-based algorithm and its application in flooded oil field layer identification
下载PDF
导出
摘要 油田水淹级别的判定对于寻找剩余油、提高油田开发水平和稳油控水效果至关重要.本文提出了一种基于Boosting的C4.5决策树算法用于油田水淹层识别.实验结果表明,相比单一的C4.5决策树,经Boosting算法提升后的集成C4.5分类器具有较高的识别率和泛化能力,具有较高的应用推广价值. The oil field flooded layer identification is especially important for searching for remained oil,improving oil field developing capability.A boosting-based C4.5 decision tree Algorithm is discussed for flooded oil field layer identification in this paper.The experiment shows that the integrated C4.5 classifier improved by boosting algorithm has better identification precision and generalization ability,compared with a single C4.5 decision tree.Therefore it is of great value.
出处 《西南民族大学学报(自然科学版)》 CAS 2007年第1期124-128,共5页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 BOOSTING算法 C4.5决策树算法 水淹层识别 boosting algorithm C4.5 decision tree algorithm flooded layer identification
  • 相关文献

参考文献4

  • 1[2]QUINLAN J R.C4.5:Programs for Machine Learning.San Mateo[M].CA:Morgan Kaufmann,1993.
  • 2[3]VALIANT.A theory of the learnable[J].Communications of the ACM,1984,27(11):1134-1142.
  • 3[4]YOAV FREUND,ROBERT E.SCHAPIRE.A decision-theoretic generalization of online learning and an application to boosting[J].Journal of Computer and SystemSciences,1997,55(1):119-139.
  • 4[5]RICHARD O D,PETER E H,DAVID G S.Pattern Classification(Second Edition)[M].John Wiley,2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部