期刊文献+

带有临界Sobolev-Hardy指标椭圆问题的径向解(英文)

Radial Solutions for Elliptic Problems with Critical Sobolev-Hardy Exponents
下载PDF
导出
摘要 设ΩcRN是球心在原点半径为R的球形区域,N≥3,0≤s<2,2*(s):=2(NN--2s),μ≥0,λ>0.运用变分方法和分析技巧,证明了带有Dirichlet边界条件的奇异临界问题-Δu-μxu 2=u 2x*(ss)-2u+λu的无穷多个径向解的存在性.这些解都带有不同个数的节点. Let ΩRN be a ball centered at the origin with radius R>0,N≥3,0≤s<2,2*(s):=2(N-s)N-2,μ≥0 and λ>0.By applying the variational methods and analytic techniques,we prove the existence of infinitely many radial solutions for the singular critical problem -Δu-μu|x|2=|u|2*(s)-2|x|su+λu with Dirichlet boundary condition on Ω.Such solutions are characterized by the number of their nodes.
作者 康东升
出处 《中南民族大学学报(自然科学版)》 CAS 2007年第2期90-94,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(10171036) 中南民族大学自然科学基金资助项目(YZZ05017)
关键词 径向解 紧性 临界Sobolev-Hardy指标 奇性 radial solution compactness critical Sobolev-Hardy exponents singularity
  • 相关文献

参考文献3

  • 1Susanna Terracini,Gianmaria Verzini. Solutions of prescribed number of zeroes to a class of superlinear ODE’s systems[J] 2001,Nonlinear Differential Equations and Applications(3):323~341
  • 2Thomas Bartsch,Michel Willem. Infinitely many radial solutions of a semilinear elliptic problem on ?N[J] 1993,Archive for Rational Mechanics and Analysis(3):261~276
  • 3Zeev Nehari. Characteristic values associated with a class of nonlinear second-order differential equations[J] 1961,Acta Mathematica(3-4):141~175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部