摘要
设ΩcRN是球心在原点半径为R的球形区域,N≥3,0≤s<2,2*(s):=2(NN--2s),μ≥0,λ>0.运用变分方法和分析技巧,证明了带有Dirichlet边界条件的奇异临界问题-Δu-μxu 2=u 2x*(ss)-2u+λu的无穷多个径向解的存在性.这些解都带有不同个数的节点.
Let ΩRN be a ball centered at the origin with radius R>0,N≥3,0≤s<2,2*(s):=2(N-s)N-2,μ≥0 and λ>0.By applying the variational methods and analytic techniques,we prove the existence of infinitely many radial solutions for the singular critical problem -Δu-μu|x|2=|u|2*(s)-2|x|su+λu with Dirichlet boundary condition on Ω.Such solutions are characterized by the number of their nodes.
出处
《中南民族大学学报(自然科学版)》
CAS
2007年第2期90-94,共5页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(10171036)
中南民族大学自然科学基金资助项目(YZZ05017)