期刊文献+

未知数量稀疏源的盲分离方法 被引量:1

A new method for blind separation of sparse sources with unknown source number
下载PDF
导出
摘要 提出了一种新的用于未知数量稀疏源的盲分离的统一方法.为了改善聚类分离的精度,首先选取混合空间中半径给定、中心位于原点的超球面以外的数据点,并将这些数据点映射到中心位于原点的单位超球面上.由此,原来的超平面线性聚类变为致密聚类,各聚类互相重叠的现象消失.然后,通过对这些映射到单位超球面上的数据点进行聚类分离来估计混合矩阵,再利用混合矩阵估计源,其中最佳不相似阈值和相应的聚类数量是自动生成的.仿真实验验证了该方法对实际音频信号包括语音信号的有效性.仿真结果表明该方法精确、简便,稳定性好,且计算量较小. In this paper,a new unified method for blind separation of sparse sources with unknown source number was presented.In order to improve the accuracy of clustering separation,all data-points outside the hypersphere of a given radius centered at origin,in mixture space were selected and then projected onto the unit hypersphere centered at origin.Thereafter the clusters became compact clusters,and the phenomenon for clusters to overlap each other disappeard.The mixing matrix was firstly estimated by clustering ...
作者 王咏平 高俊
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第12期46-49,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 语音信号 盲源分离 稀疏信号 聚类 基本顺序算法 改进的基本顺序算法 sparse signal blind source separation(BSS) speech signal clustering basic sequential algorithmic scheme(BSAS) modified basic sequential algorithmic scheme(MBSAS)
  • 相关文献

参考文献12

  • 1[1]Girolami M.Self-organising Neural Networks:Independent Component Analysis and Blind Source Separation[M].London:Springer Verlag,1999.
  • 2付卫红,杨小牛,刘乃安,曾兴雯.基于概率密度估计盲分离的通信信号盲侦察技术[J].华中科技大学学报(自然科学版),2006,34(10):24-27. 被引量:14
  • 3[3]Hyvrinen A,Karhunen J,Oja E.Independent Component Analysis[M].New York:John Wiley,2001.
  • 4[4]Zibulevsky M,Kisilev P,Zeevi Y Y,et al.Blind source separation via multinode sparse representation[J].Advances in neural information processing systems,2002,14:1049-1056.
  • 5[5]Van H M M.Clustering approach to square and non-square blind source separation[C]∥Neural Networks for Signal Processing-Proceedings of the IEEE Workshop 1999.New York:IEEE Press,1999:315-323.
  • 6[6]O'Grady P D,Pearlmutter B A.Hard-LOST:Modified k-means for oriented lines[C]∥Proceedings of the Irish Signals and Systems Conference.Maynooth,Ireland:NUI Press,2004:247-252.
  • 7[7]O'Grady P D,Pearlmutter B A.Soft-LOST:EM on a mixture of oriented lines[C]∥Independent Component Analysis and Blind Signal Separation,ICA 2004 5th,Proceedings.Berlin:Springer Verlag,2004:430-436.
  • 8[8]Lin J K,Grier D G,Cowan J D.Feature extraction approach to blind source separation[C]∥Neural Networks for Signal Processing-Proceedings of the IEEE Workshop 1997.New York:IEEE Press,1997:398-405.
  • 9[9]Bofill P,Zibulevsky M.Underdetermined blind source separation using sparse representations[J].Signal Processing,2001,81:2353-2362.
  • 10[10]Duda R O,Hart P E,Stork D G.Pattern Classification[M].2nd.New York:John Wiley,2001.

二级参考文献9

  • 1许士敏,陈鹏举.频谱混叠通信信号分离方法[J].航天电子对抗,2004,33(5):53-55. 被引量:10
  • 2Jutten C, Herault J. Blind separation of sources,Part I : an adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24:1-10.
  • 3Common P, Jutten C, Herault J. Blind separation of sources, Part Ⅱ: problems statement [J]. Signal Processing, 1991, 24: 11-20.
  • 4Sorouchyari E. Blind separation of sources, Part Ⅲ:stability analysis[J]. Signal Processing, 1991, 24:21-29.
  • 5Common P. Independent component analysis: a new concept? [J] Signal Processing, 1994, 36(3): 287- 314.
  • 6Hyvarinen A, Oja E. Independent component analysis: algorithm and applications [J]. Neural networks, 2000, 13:411-430.
  • 7Cardoso J F, Laheld B. Equivariant adaptive sources parathion[J]. IEE Trans Signal Processing, 1996, 44:3 017-3 029.
  • 8Jones M C, Sheather S J. A brief survey of bandwidth selection for density estimation[J]. Journal of the American Statistical Association, 1996,91(433) :401-407.
  • 9贾鹏,丛丰裕,史习智.杂系混合信号的盲分离[J].上海交通大学学报,2004,38(2):203-206. 被引量:2

共引文献13

同被引文献13

  • 1HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 2Cardoso J F.Blind signal separation: statistical principles[J]. Proc of IEEE: Special Issue on Blind Identification and Esti?mation, 1998, 90( 10) :2009-2026.
  • 3Theis F J, Jung A, Puntonet C G, et al.Linear geometric ICA: fundamentals and algorithms[J].Neural Computation, 2003,15: 419-439.
  • 4Bofill P, Zibulevsky M.Underdetermined blind source separa?tion using sparse representations[J].Signal Process, 2001,81 ( II) : 2353-2362.
  • 5Li Y, Andrzej C, Amari S.Analysis of sparse representation and blind source separation[J].Neural Computation, 2004,16 (6): 1193-1234.
  • 6Sun T Y, Lan L E, Liu C C, et al.Mixing matrix identifica?tion for underdetermined blind signal separation: using hough transform and fuzzy k-means c1ustering[C].lProceedings of IEEE International Conf on Systems, Man and Cybernetics, 2009: 1621-1626.
  • 7Tan Beihai, Yang Zuyuan, Zhang Yuanjian.An underdetermined blind separation algorithm based on fuzzy clustering[C].lPro?ceedings of the 3rd International Conference on Innovative Computing Information and Control, Dalian, Liaoning, China, 2008: 404-408.
  • 8Dorigo M, Blum C.Ant colony optimization theory: a survey[J]. Theoretical Computer Science, 2005,344: 243-278.
  • 9Colomi A, Dorigo M, Maniezzo Y.Distributed optimization by ant colonies[C]IIProceedings of European Conference on Artificial Life.Paris, France: Elsevier, 1991 : 134-142.
  • 10Han Yanfang, Shi Pengfei.An improved ant colony algorithm for fuzzy clustering in image segmentation[J].Neurocomputing, 2007,70: 665-671.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部