摘要
提出了一种新的用于未知数量稀疏源的盲分离的统一方法.为了改善聚类分离的精度,首先选取混合空间中半径给定、中心位于原点的超球面以外的数据点,并将这些数据点映射到中心位于原点的单位超球面上.由此,原来的超平面线性聚类变为致密聚类,各聚类互相重叠的现象消失.然后,通过对这些映射到单位超球面上的数据点进行聚类分离来估计混合矩阵,再利用混合矩阵估计源,其中最佳不相似阈值和相应的聚类数量是自动生成的.仿真实验验证了该方法对实际音频信号包括语音信号的有效性.仿真结果表明该方法精确、简便,稳定性好,且计算量较小.
In this paper,a new unified method for blind separation of sparse sources with unknown source number was presented.In order to improve the accuracy of clustering separation,all data-points outside the hypersphere of a given radius centered at origin,in mixture space were selected and then projected onto the unit hypersphere centered at origin.Thereafter the clusters became compact clusters,and the phenomenon for clusters to overlap each other disappeard.The mixing matrix was firstly estimated by clustering ...
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第12期46-49,共4页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词
语音信号
盲源分离
稀疏信号
聚类
基本顺序算法
改进的基本顺序算法
sparse signal
blind source separation(BSS)
speech signal
clustering
basic sequential algorithmic scheme(BSAS)
modified basic sequential algorithmic scheme(MBSAS)