一种具有偏差变元的Duffing型方程周期的存在唯一性
Existence and Uniqueness of Periodic Solutions for a kind of Duffing Equation with a Deviating Argument
摘要
利用重合度理论研究了一类具有偏差变元的Duffing型方程x″+g(t-T(t)))=p(t).获得了该方程T-周期存在唯一性的若干新结论.
出处
《长沙大学学报》
2007年第5期10-13,共4页
Journal of Changsha University
基金
长沙大学新世纪高等教育教学改革工程(批准号:Y024)资助项目
参考文献9
-
1[1]T.A.Burton.Stability and Periodic Solution of Ordinary and Functional Differential Equations[[M].Academic Press,Orland,FL.,1985:67~88.
-
2[2]Shiping Lu and Wegao Ge.Periodic solution for a kind of second -order differential equations with multiple deviating arguments[J].Appl.Math.Comput.,2003,(146):194~209
-
3[3]J.Mawhin.Periodic solutions of some Vector retarded funtional differential equations[J].J.Math.Anal.Appl.,1974,(45):588~603.
-
4[4]R.E.Gaines,J.Mawhin.Coincide degree and nonlinear differential equations[J].Lecture Notes in Math.,Spring-Verlag,1977,(568):20~50.
-
5[5]Shiping Lu and Weigao Ge.Periodic solutions for a kind of Lienesrd equations with deviating arguments[J].J.Math.Anal.Appl.,2004,(249):231 ~243.
-
6[6]Shiping Lu,Weigao Ge.Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviation argument[J].Nonlinear Analysis,2004,(56):501 ~ 514.
-
7[7]Huang Xiankai and Xiang Xigui.On existence of 2π-periodic solutions for delay Duffing eqution x"+g(t,x(t-(t)))= p(t)[J].Chinese Science Bulletin,1994,(39):201~203.
-
8[8]Genqiang Wang.A priori bounds for periodic solutions of a delay Rayleigh equation[J].Appl.Math,Lett.,1999,(12):41 ~44.
-
9Bing-wenLiu,Li-hongHuang.Periodic Solutions for a Class of Forced Lienard-type Equations[J].Acta Mathematicae Applicatae Sinica,2005,21(1):81-92. 被引量:4
二级参考文献14
-
1Bonheure, D., Fabry, C., Sonets, D. Periodic solutions of forced isochronous oscillators at resonance.Discrete and continuous Dynamical systems, 8(4): 907-930 (2002).
-
2Burton, T.A. Stability and periodic-solution of orinary and functional differential equations. Academic Press. Orland, FL., 1985.
-
3Chen, H.B., Li, Kaitai. On the existence and uniquencess of periodic solutions of Lienard's equation.Chinese Annals of Mathematics, 22A(2): 237-242 (2001) (in Chinese).
-
4Hardy. G.H., Littlewood, J.E., Polya G. Inequalities. Cambridye Univ. Press, London, 1964.
-
5Liu, B., Yu, Jianshe. On the existence of harmonic solution for the n-Dimensional Lideard equations withDelay, Mathematics Acta Scientia, 22A(3): 323-331 (2002) (in Chinese).
-
6Mawhin, J. An extension a theorem of A.C.Lazer on forced nonlinear oscillatons. J. Math. Anal. Appl.,40:20-29 (1972).
-
7Mawhin, J. Degre toplogique et solutions periodiques des systeerntials nonlineares. Bull. Soc. Roy. Sci.Lieqe, 38:308-398 (1969).
-
8Omari, P., Villari, G., Zanolin, F. Peridic solutions of the Lidnard equations with one-sided growth restrictions. J. Differential Equations, 67:278-293 (1987).
-
9Papini, Duccio. Periodic solutions for a class of Lidnard equations. Funkcialaj Ekvacioj, 43:303-322(2000).
-
10Phuong, Nguyen Cac. Periodic solutions of a Lidnard equation with forcing term. Nonlinear Anal., 43:403-415 (2001).
共引文献3
-
1Xiao Bing,Liu Bingwen,Huang Lihong.PERIODIC SOLUTIONS FOR A LINARD-TYPE EQUATION WITH DELAYS[J].Annals of Differential Equations,2005,21(3):460-464. 被引量:1
-
2张红,袁朝晖.具有两个偏差变元的Duffing型方程周期解的存在唯一性[J].湖南文理学院学报(自然科学版),2006,18(3):5-8.
-
3戴娟,周宗福.高阶时滞微分方程周期解的存在性[J].合肥学院学报(自然科学版),2009,19(2):1-5.
-
1杨作东,杨会生.一类非线性方程两点边值问题正解的存在性[J].华中师范大学学报(自然科学版),1994,28(4):431-434.
-
2张训峰,朱健民.拓扑度的一个性质[J].数学理论与应用,2004,24(3):102-105.
-
3赵增勤.af的拓扑度及其应用[J].Journal of Mathematical Research and Exposition,1991,11(4):529-534.
-
4张若军,朱宏伟.具有分布时滞的Duffing型方程周期解的存在性[J].中国海洋大学学报(自然科学版),2007,37(2):219-221. 被引量:1
-
5林文贤.关于一类具偏差变元的Duffing型方程的周期解注记[J].江西师范大学学报(自然科学版),2012,36(5):499-501.
-
6张正球,刘开宇.二阶微分方程周期解的存在性[J].湖南大学学报(自然科学版),2000,27(1):9-12. 被引量:5
-
7许敏,周伟灿.一类带阻尼项Duffing型方程周期解的存在性[J].南京气象学院学报,2007,30(4):571-574. 被引量:1
-
8曹菊生.概率DC-映象的拓扑度及其不动点[J].南京师大学报(自然科学版),1990,13(4):20-26.
-
9万正晓.一类二阶非线性常微分方程周期解的存在性[J].河南师范大学学报(自然科学版),1996,24(3):90-91.
-
10孙飞,李红玉.二阶三点边值问题解的存在性[J].科技信息,2011(22). 被引量:1