期刊文献+

一种具有偏差变元的Duffing型方程周期的存在唯一性

Existence and Uniqueness of Periodic Solutions for a kind of Duffing Equation with a Deviating Argument
下载PDF
导出
摘要 利用重合度理论研究了一类具有偏差变元的Duffing型方程x″+g(t-T(t)))=p(t).获得了该方程T-周期存在唯一性的若干新结论.
出处 《长沙大学学报》 2007年第5期10-13,共4页 Journal of Changsha University
基金 长沙大学新世纪高等教育教学改革工程(批准号:Y024)资助项目
  • 相关文献

参考文献9

  • 1[1]T.A.Burton.Stability and Periodic Solution of Ordinary and Functional Differential Equations[[M].Academic Press,Orland,FL.,1985:67~88.
  • 2[2]Shiping Lu and Wegao Ge.Periodic solution for a kind of second -order differential equations with multiple deviating arguments[J].Appl.Math.Comput.,2003,(146):194~209
  • 3[3]J.Mawhin.Periodic solutions of some Vector retarded funtional differential equations[J].J.Math.Anal.Appl.,1974,(45):588~603.
  • 4[4]R.E.Gaines,J.Mawhin.Coincide degree and nonlinear differential equations[J].Lecture Notes in Math.,Spring-Verlag,1977,(568):20~50.
  • 5[5]Shiping Lu and Weigao Ge.Periodic solutions for a kind of Lienesrd equations with deviating arguments[J].J.Math.Anal.Appl.,2004,(249):231 ~243.
  • 6[6]Shiping Lu,Weigao Ge.Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviation argument[J].Nonlinear Analysis,2004,(56):501 ~ 514.
  • 7[7]Huang Xiankai and Xiang Xigui.On existence of 2π-periodic solutions for delay Duffing eqution x"+g(t,x(t-(t)))= p(t)[J].Chinese Science Bulletin,1994,(39):201~203.
  • 8[8]Genqiang Wang.A priori bounds for periodic solutions of a delay Rayleigh equation[J].Appl.Math,Lett.,1999,(12):41 ~44.
  • 9Bing-wenLiu,Li-hongHuang.Periodic Solutions for a Class of Forced Lienard-type Equations[J].Acta Mathematicae Applicatae Sinica,2005,21(1):81-92. 被引量:4

二级参考文献14

  • 1Bonheure, D., Fabry, C., Sonets, D. Periodic solutions of forced isochronous oscillators at resonance.Discrete and continuous Dynamical systems, 8(4): 907-930 (2002).
  • 2Burton, T.A. Stability and periodic-solution of orinary and functional differential equations. Academic Press. Orland, FL., 1985.
  • 3Chen, H.B., Li, Kaitai. On the existence and uniquencess of periodic solutions of Lienard's equation.Chinese Annals of Mathematics, 22A(2): 237-242 (2001) (in Chinese).
  • 4Hardy. G.H., Littlewood, J.E., Polya G. Inequalities. Cambridye Univ. Press, London, 1964.
  • 5Liu, B., Yu, Jianshe. On the existence of harmonic solution for the n-Dimensional Lideard equations withDelay, Mathematics Acta Scientia, 22A(3): 323-331 (2002) (in Chinese).
  • 6Mawhin, J. An extension a theorem of A.C.Lazer on forced nonlinear oscillatons. J. Math. Anal. Appl.,40:20-29 (1972).
  • 7Mawhin, J. Degre toplogique et solutions periodiques des systeerntials nonlineares. Bull. Soc. Roy. Sci.Lieqe, 38:308-398 (1969).
  • 8Omari, P., Villari, G., Zanolin, F. Peridic solutions of the Lidnard equations with one-sided growth restrictions. J. Differential Equations, 67:278-293 (1987).
  • 9Papini, Duccio. Periodic solutions for a class of Lidnard equations. Funkcialaj Ekvacioj, 43:303-322(2000).
  • 10Phuong, Nguyen Cac. Periodic solutions of a Lidnard equation with forcing term. Nonlinear Anal., 43:403-415 (2001).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部