摘要
文章给出了一种非线性主成分评价模型:核主成分分析(KPCA),它将原变量空间通过一个非线性变换映射到高维特征空间F中,在F中进行线性主成分分析,通过核技巧,它只需在原空间进行点积运算,而不必知道映射的具体形式,只要选取适当的核函数和参数,可以使第一主成分的贡献率达到90%,结合安徽省生态经济可持续发展度为例,说明了KPCA应用,计算结果与现实相符,KPCA方法具有实际的应用价值。
A new method for performing a nonlinear form of principal component analysis (PCA) was proposed, with original variable space mapping through a nonlinear transformation in high dimensional feature space. By kernel skills, the contribution of the first component was up to 90%. Kernel principal component analysis (KPCA) was applied to an example of sustainable development of ecological economy in Anhui Province, with result satisfactory to the reality.
出处
《环境科学与技术》
CAS
CSCD
北大核心
2007年第12期91-93,共3页
Environmental Science & Technology
基金
江苏省"六大人才高峰"项目
江苏省自然科学基金(BK2004089)
关键词
核主成份分析
生态经济
可持续发展
kernel principal component analysis (KPCA)
ecological economy
sustainable development