期刊文献+

变温蠕变实验的COP微流控芯片热压制备 被引量:7

Variable temperature quasi-creep experiment for fabrication of microfluidic chip using Cyclo-olefin Polymer(COP)
下载PDF
导出
摘要 采用热压方法制备了COP微流控芯片。由于温度对微结构热压成形的质量影响最大,基于材料的粘弹性特性,通过变温准蠕变实验获得热压参考温度Tr,即从材料玻璃点温度以下开始,以1.5℃/min的温升速率,在热压工作压力下热压聚合物基片,通过温度-位移实时采集系统获得材料的温度-形变曲线,曲线的拐点对应的温度即是热压参考温度。实验证明了在该温度下热压成形具有高复制精度和低整体变形,微结构宽度和深度方向的复制精度分别达到97.6%和94.3%。电泳实验和DNA分析实验得出COP芯片具有良好的生物兼容性,适用于生化分析。 A hot embossing method is used to fabricate Cyclo-olefin Polymer (COP) microfluidic chip in this paper. Since temperature is the most important parameter in hot embossing process, the variable temperature quasi-creep experiment is set up to study the viscoelastic character of COP for determination of the working temperature. From a point of temperature below COP's (Tg) temperature, applying the embossing working pressure, the temperature-deformation curve at slow temperature rising speed (1.5°C/min) is obtained. According to this curve, the hot embossing of microstructure under embossing reference temperature (Tr) has a high accuracy and low substrate deformation. Experiments show that average duplication precision is 97.6% in width and 94.3% in depth. Electrophoresis and DNA separation experiments have been done on fabricated COP chip, which shows that COP chip has excellent biologic compatibility and is suitable for biochemical analysis.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第7期1090-1095,共6页 Optics and Precision Engineering
基金 国家863MEMS重大专项课题资助项目(No.2004AA404260) 国家自然科学基金资助项目(No.50575036) 辽宁省博士启动基金资助项目(No.20041073)
关键词 COP微流控芯片 变温准蠕变实验 电泳效率 Biochemistry Biocompatibility Creep Deformation DNA Electrophoresis Microstructure Polyolefins
  • 相关文献

参考文献8

  • 1[1]WANG H Y,FOOTE R S,JACOBSON S C,et al..Low temperature bonding for microfabrication of chemical analysis devices[J].Sensors and Actuators B:Chemical,1997,45(3):199-207.
  • 2[2]BURNS M A,JOHNSON B N,BRAHMASANDRA S N,et al..An integrated nanoliter DNA analysis device[J].Science,1998,5388(282):484-487.
  • 3[4]GEORGE W,WOODDRUFF III.Microfluidic channels in Polymethylmechacrylate by optimizing aluminum adhesion[C].22nd Annual Microelectronic Engineering Confefence,2004:110-113.
  • 4[5]SHEN X J,PAN L W,LIN L.Microplastic embossing process:experimental and theoretical characterizations[J].Sensors and Actuators A:Physical,2002(97/98):428-433.
  • 5[6]GERLACH A,KNEBEL G,GUBER A E,et al..Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis[J].Microsystem Technologies,2002,7(5/6):265-268.
  • 6[7]CHEN Z F,GAOY H,LIN J M,et al..Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template[J].Journal of Chromatography A,2004,1038:239-245.
  • 7[9]LEI K F,LI W J,YAM Y.Effects of contact-stress on hot-embossed PMMA microchannel wall profile[J].Microsystem Technologies,2005,11:353-357.
  • 8[10]SCHEER H C,SCHULA H.A contribution To the flow behaviour of thin polymer films during hot embossing lithography[J].Microelectronic Engineering,2001,56:311-332.

同被引文献98

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部