期刊文献+

GARCH类模型波动率预测评价 被引量:38

Evaluation on Volatility Forecasting Performance of GARCH-Type Models
下载PDF
导出
摘要 GARCH类模型已经广泛运用于波动率的预测,但对模型的预测表现进行评价却受到了忽视,其主要原因是缺乏合适的衡量标准。本文首先运用GARCH类模型对上证指数收益率进行了全面的估计及样本外预测,然后以已实现波动率作为波动率预测的评价标准,通过M-Z回归和损失函数来评价GARCH类模型的波动率预测表现。结果表明,无论是样本内还是样本外,GARCH类模型都能够较好的预测上证指数的收益波动率。其中,偏斜t-分布假设下的GJR(1,1)模型的预测能力最强。 GARCH-type models have been broadly used to forecast volatility.But it's ignored to evaluate the performance of volatility forecasting.The reason is mainly lack of appropriate benchmark to evaluate.We estimate and forecast the return of SZZS using GARCH-type models.Realized volatility is computed as benchmark using 5-minuets high frequency data.Volatility forecasting performance is measured using M-Z regression and loss function.The conclusion is that GARCH type models have a very good forecasting performance both in sample and out of sample,and GJR(1,1) under skewed t-distribution assumption is the most powerful to forecast.
作者 黄海南 钟伟
出处 《中国管理科学》 CSSCI 2007年第6期13-19,共7页 Chinese Journal of Management Science
关键词 GARCH 已实现波动率 M-Z回归 损失函数 GARCH realized volatility M-Z regression loss function
  • 相关文献

参考文献16

  • 1[1]Bollerslev,T.,R.Y.Chou,K.F.Kroner.ARCH Modeling in Finance:A Review of the Theory and Empirical Evidence[J].Journal of Econometrics,1992,52:5-59.
  • 2[2]Mincer,J.and V.Zarnowitz.The Evaluation of Economic Forecasts[J].in J.Mincer,ed.,Economic Forecasts and Expectations (New York:National Bureau of Economic Research),1969.
  • 3[3]Cumby R.,S Figlewski,and J.Hasbrouck.Forecasting Volatility and Correlations with EGARCH Models[J].Journal of Derivatives,1993,Winter:51-63
  • 4[4]Tsay.Ruey S..Analysis of Financial Time Series[M].John Wiley & Sons,2002:112-113
  • 5[5]Andersen T,Bollerslev T..Towards a unified framework for high and low frequency return volatility modeling[J].Statistical Neerlandica,1998,52 (3):273-302.
  • 6[6]Andersen T.G.,Tim Bollerslev Francis Diebold,and P.Labys.Modeling and Forecasting Realized Volatility[J].Econometrica,2003,71(2):579-625.
  • 7魏巍贤,周晓明.中国股票市场波动的非线性GARCH预测模型[J].预测,1999,18(5):47-49. 被引量:52
  • 8徐正国,张世英.调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J].系统工程,2004,22(8):60-63. 被引量:51
  • 9周林.股票波动率模拟及预测效果的实证研究[J].上海经济研究,2006,18(12):100-105. 被引量:7
  • 10[10]Engle RF..Autoregressive conditional heteroskedasticity with estimates of the variance of U.K.inflation[J].Econometrica,1982,45:987-1007.

二级参考文献20

  • 1Andersen T G,Bollerslev T,Diebold F,Labys P. Exchange rate returns standardized by realized volatility are (nearly) Gaussian[J]. Multinational Finance Journal,2000,4:159~179.
  • 2Andersen T G,Bollerslev T,Diebold F,Labys P. The distribution of exchange rate volatility[J]. Journal of American Statistical Association,2001,96:42~55.
  • 3Andersen T G,Bollerslev T,Diebold F,Ebens H. The distribution of stock return volatility[J]. Journal of Financial Economics,2001,61:43~76.
  • 4Andersen T G,Bollerslev T,Diebold F,Labys P. Modelling and forecasting realized volatility[J]. Econometrica,2003, 71(2):579~625.
  • 5Blair B J,Poon S H,Tarlor S J. Forecasting S&P 100 volatility:the incremental information content of implied volatilities and high frequency index returns[J]. Journal of Econometrics,2001,105:5~26.
  • 6Andersen T G,Bollerslev T. Answering the critics:yes, ARCH models do provide good volatility forecasts[J]. International Economic Review,1998,39(4):885~905.
  • 7Andersen T G,Bollerslev T,et al. Analytic evaluation of volatility forecasts[R]. 2002.
  • 8Beran J. Maximum likelihood estimation of the differencing parameter for invertible and short and long memory autoregressive integrated moving average models[J]. Journal of the Royal Statistical Society,1995,57(4):659~672.
  • 9Hull J,White A. The pring of options on assets with stochastic volatility[J]. J.Finance,1987,42:281~300.
  • 10Mincer J,Zarnowitz V. The evaluation of economic forcasts[M]. Economic Forecasts and Expections. New York:National Bureau of Economic Research,1969.

共引文献104

同被引文献287

引证文献38

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部