期刊文献+

基于Hilbert-Huang变换的含噪语音特征分析 被引量:3

Analysis of Noise-Corrupted Speech Characteristics Based on Hilbert-Huang Transform
下载PDF
导出
摘要 应用Hilbert-Huang变换方法对语音特征进行分析,提高低信噪比语音端点检测的正确率.对语音信号进行Hilbert-Huang变换,得到语音信号在时域和频域上的能量分布,建立语音信号的时间-频率-振幅的三维Hilbert谱分布以及边际谱分布进行特征分析,最后通过语音端点检测验证Hilbert-Huang变换分析含噪语音特征及降噪的有效性.通过语音端点检测的结果表明,经过Hilbert-Huang变换对含噪语音分析降噪后,检测准确率有显著提高.Hilbert-Huang变换方法能够真实描述语音信号的非线性以及非平稳特性,具有广泛的应用前景. To improve the accuracy of speech/nonspeech decision by using Hilbert-Huang transform method to analyze the features of speech signals. Applying the Hilbert-Huang transform on the speech signals, the energy distribution of speech signals on time domain and frequency domain are obtained firstly, then,building the three-dimensional Hilbert-Spectrum of time-frequency-amplitude and analyzing the marginal spectrum. Finally validating the efficiency of speech processing based on Hilbert-Huang transform by the experiments of speech/nonspeech decision. The results of speech endpoint detection show that, after analyzing and denoising by Hilbert-Huang transform, the accuracy of detection improves markedly. Hilbert-Huang method gives the true description of the non-linear and non-stationary characteristics of speech signals, it has wide application prospect.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第10期2288-2293,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助项目(60302027) 浙江省教育厅科研计划项目资助(20030620)
关键词 HILBERT-HUANG变换 语音信号 降噪 端点检测 Hilbert-Huang Transform speech signals denoising speech endpoint detection
  • 相关文献

参考文献10

  • 1高慧,苏广川,陈善广.不同情绪状态下汉语语音的声学特征分析[J].航天医学与医学工程,2005,18(5):350-354. 被引量:23
  • 2[2]Huang N.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[C]// Proc R Soc Lond,A 1998,454(A):903-995.
  • 3[3]Loh CH,Tsu-Chiu Wu,Huang NE.Application of the Empirical Mode Decomposition-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses[J].Bulletin of the Seismological Society of America,2001,91(5):1339-1357.
  • 4[4]Echererria J.Application of Empirical Mode Decomposition to Heart Rate Variability Analysis[J].Medical &Biological Engineering &Computing.2001,39(4):471-479.
  • 5[5]Leisk G,Hsu N,Huang NE.Application of the Hilbert-Huang Transform to Machine Tool Condition/Health Monitoring[C]// AIP Conference Proceeding,Brunswick,2002,615(1):1711-1718.
  • 6黄海,潘家强.基于Hilbert-Huang变换的基音周期提取方法[J].声学学报,2006,31(1):35-41. 被引量:11
  • 7[7]Yang ZH,Huang D,Yang LH.A Novel Pitch Period Detection Algorithm Based on Hilbert-Huang Transform[Z].LNCS 3338,2004,586-593.
  • 8[8]Huang N,Wu ML,Qu WD,et al.Applications of Hilbert-Huang Transform to Non-Stationary Financial Time Series Analysis[J].Applied Stochastic Models in Business and Industry,2003,361(19):245-268.
  • 9[9]Qiu L.Fundamental Frequency Determination Based on Instantaneous Frequency Estimation[J].Signal Processing,1995,44(2):233-241
  • 10[10]Boll S.Suppression of Acoustic Noise in Speech Using Spectral Subtraction[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1979,2:113-120.

二级参考文献18

  • 1Ross M, Shaffe H, Cohen A, Freudberg R et al. Average magnitude difference function pitch extractor. IEEE Trans on Acoustics, Speech and Signal Processing, 1974; 22(5):353-362
  • 2Rabiner L R. On the use of autocorrelation analysis for pitch detection. IEEE Trans. ASSP, 1977; ASSP-25(1):24-33
  • 3Noll A M. Cepstrum pitch determination. J. Acoust. Soc.Am., 1967; 41(2): 293-309
  • 4Seneff S. Real-time harmonic pitch detector. IEEE Trans.On Acoustics, Speech and Signal Processing, 1978; 26(4):358-365
  • 5Kobayashi M, Sakamoto M et al. Wavelet analysis for text to speech systems. IBM Research Report, Tokyo Research Laboratory, 1996
  • 6Ercelebi E. Second generation wavelet transform-based pitch period estimation and voiced/unvoiced decision for speech signals. Applied Acoustics, 2003; 64(1): 25-41
  • 7张家碌 胡兴慧.汉语和外语的摹频模式的对比研究[J].声学学报,1995,20(1):66-66.
  • 8Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Pro. R. Soc. Lond. A 1998: 454:903-995
  • 9Hilbert-Huang Transform technology, http://techtransfer.gsfc.nasa.gov
  • 10Veprek P, Scordilis M S, Analysis, enhancement and evaluation of five pitch determination techniques. Speech communication, 2002; 37(3-4): 249-270

共引文献32

同被引文献39

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部