期刊文献+

基于无线传感器网络移动代理变种在TinyOS中的实现 被引量:3

Implementation of Mobile Agent Variation Based on Wireless Sensor Network in TinyOS
下载PDF
导出
摘要 介绍了无线传感器网络移动代理的概念和特点,分析了TinyOS主动消息通信模型基本原理,进而提出了一种移动代理变种在TinyOS中的实现机制.该变种把代码空间和数据空间区分传输,利用无线信道的广播特性极大地减少了发送代码空间的能量消耗.仿真结果表明,在节点数目较多的情况下,移动代理变种模式的网络性能比传统的客户端服务器模式更加优越. The concept and the characteristic of mobile agent in wireless sensor network are introduced, and the basic principle of active message communication model is analyzed in TinyOS, Furthermore, scheme to realize mobile agent variation in TinyOS is provided. The simulation results show that, network performance in mobile agent variation mode is better than the one in traditional client/server mode when number of nodes is much.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第10期2324-2327,共4页 Chinese Journal of Sensors and Actuators
关键词 无线传感器网络 主动消息通信 移动代理变种 wireless sensor network active message communication mobile agent variation
  • 相关文献

参考文献4

  • 1[1]Kumar S,Zhao F,shepherd D.Collaborative Ssignal and Information Processing in Microsensor Networks[J].IEEE Signal Processing Magazine,2002,9(2):13-14.
  • 2[2]Zhao F,Zhin J,Reich J.Information-Driven Dynamic Sensor Collaboration for Tracking Applications[J].IEEE Signal Processing Magazine,2002,I9(2):61-72.
  • 3[3]Guibas L J.Sensing,tracking,and Reasoning with Relations[J].IEEE Signal Processing Magazine,2002,19(2):73-85.
  • 4[4]Qi H,Xu Y.Mobile-Agent-Based Collaborative Signal and Information Processing in Sensor Networks[J].Proc.IEEE,2003,91(8):1172-1183.

同被引文献34

  • 1张新良,石纯一.M-POMDP模型及其划分求解算法[J].清华大学学报(自然科学版),2005,45(10):1413-1416. 被引量:3
  • 2陈志,王汝传,孙力娟.一种无线传感器网络的多Agent系统模型[J].电子学报,2007,35(2):240-243. 被引量:14
  • 3Qi H, Xu Y. Mobile Agent Based Collaborative Signal and Information Processing in Sensor Networks. Proceeding of IEEE , 2003,91 (8) : 1172-1183.
  • 4IL YAS M, MAHGOUB I. Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems [M]. USA : CRC Press ,2005.
  • 5Bernstein D S, Givan R, Immerman N, and Zilberstein S. The Complexity of Centralized Control of Markov Decision Processes[J]. Mathematics of Operations Research, 2002.
  • 6Goldman C V, Zilberstein S. Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis [J]. Journal of Al Research, 2004.
  • 7Maayan Roth, Reid Simmons and Manuela Veloso, Exploiting Factored Representations for Decentralized[J]. AAMAS07, 2007 : 469- 475.
  • 8Boutilier C, Dearden R, and Goldszmidt M. Stochastic Dynamic Programming with Factored Representations[J]. Artificial Intelligence, 2000.
  • 9Pierrick Plamondon, Brahim Chaib-draa and Abder Rezak Benaskeur. A Q-Decomposition and Bounded RTDP Approach to Resource Allocation[J]. AAMAS07, 2007 : 1212-1219.
  • 10Stuart Russell, Andrew L. Zimdars. Q-Decomposition for Reinforcementlearning Agents[J]. Proceedings of the Twentieth International Conference on Machine Learning. 2003.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部