期刊文献+

广义Lorenz系统的模糊建模和同步 被引量:1

Fuzzy Modeling and Synchronization of Generalized Lorenz System
下载PDF
导出
摘要 广义Lorenz系统包括经典Lorenz系统和无穷多个结构相似但不拓扑等价的混沌系统。针对广义Lorenz规范式(GLCF)结构,基于T-S模型进行了系统的模糊重构;利用Lyapunov稳定性理论和反馈同步的思想实现了重构系统的同步,并推导了误差系统以衰减率α实现全局渐近稳定的充分条件。统一混沌系统和扩展Liu系统均属于典型的广义Lorenz系统。利用LMI方法对这两个混沌系统所进行的仿真实验结果表明,该模糊同步方法对于满足GLCF的所有混沌系统均适用。 Generalized Lorenz system(GLS) contains the classical Lorenz system and infinite chaotic systems which are similar in structure but not topologically equivalent with Lorenz system.The system structure of generalized Lorenz canonical form(GLCF) is reconstructed based on T-S model.Then using Lyapunov stability theory and feedback synchronization concept,the reconstructed systems achieve synchronization.Moreover to the error system with the decay rate α,sufficient conditions of global asymptotic stability are given.Simulation researches based on LMI method for unified chaotic system and extended Liu system which are typical GLS show that the fuzzy synchronization method proposed is fit for all chaotic systems satisfying GLCF.
出处 《控制工程》 CSCD 2007年第2期174-177,181,共5页 Control Engineering of China
基金 江苏省自然科学基金资助项目(BK2004132) 江苏省科技厅青年创新基金资助项目(BK2004421)
关键词 广义Lorenz系统 混沌同步 T-S模型 模糊建模 模糊控制 generalized Lorenz system chaotic synchronization T-S model fuzzy modeling fuzzy control
  • 相关文献

参考文献8

  • 1[1]Celikovsky S,Chen G R.On a generalized Lorenz canonical form of chaotic systems[J].International Journal of Bifurcation and Chaos,2002,12(8):1789-1812.
  • 2[2]LV J H,Chen G R,Cheng D Z.A new chaotic system and beyond:the generalized Lorenz-like system[J].Int J Bifurcation and Chaos,2004,14(5):1507-1537.
  • 3[3]Liu C X,Liu T,Liu L.A new chaotic attractor[J].Chaos Solitons and Fractals,2004,22(4):1031-1038.
  • 4[4]Liu C X,Liu L,Liu T.A new butterfly-shaped attractor of Lorenz-like system[J].Chaos Solitons and Fractals,2006,28(5):1196-1203.
  • 5[6]Park J H.Stability criterion for synchronization of linearly coupled unified chaotic systems[J].Chaos,Solitons & Fractals,2005,23(6):1319-1325.
  • 6Adaptive synchronization of Rossler and Cheng chaotic systems[J].Chinese Physics B,2002,11(7):666-669. 被引量:8
  • 7[9]Yang T,Chua L O.Generalized synchronization of chaos via linear transforms[J].Iht J Bifur & Chaos,1999,9(1):215-219.
  • 8王耀南,谭文,段峰.Robust fuzzy control for chaotic dynamics in Lorenz systems with uncertainties[J].Chinese Physics B,2006,15(1):89-94. 被引量:1

二级参考文献14

  • 1Ott E, Grrebogi C and Yorke J A 1990 Phys. Rev. Lett.64 1196.
  • 2Tan W and Wang Y N 2004 Chin. Phys. 13 459.
  • 3Wang S H and Liu W Q 2005 Chin. Phys. 14 55.
  • 4Tan W and Wang Y N 2005 Chin. Phys 14 72.
  • 5Zhou Y F and Tse C K 2005 Chin. Phys. 14 61.
  • 6Tan W and Wang Y N 2004 Acta Phys. Sin. 53 4087 (in Chinese).
  • 7Ye M Y 2005 Acta Phys. Sin. 54 30 (in Chinese}.
  • 8Li G H, Xu D M and 7,hou S P 2004 Acta Physl Sin. 5355 (in Chinese).
  • 9Royd S 1994 Linear Matrix Inequalities in Systems and Control Theory (Philadelphia: SIAM).
  • 10Takagi T and Sugeno M 1985 IEEE Trans. Syst. Man.Cybern. 15 116.

共引文献7

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部