期刊文献+

复乘法构建椭圆曲线的一种改进

Improving of Construct Elliptic Curve by Complex Multiplication
下载PDF
导出
摘要 在使用椭圆曲线密码学中,有一种根据有限域上的点阶数来构建椭圆曲线的方法,关于这一算法,Atkin和Morain建议使用复乘理论构建这些曲线.这种算法仅对低阶多项式有效,对高度数多项式的分解是非常费时的,尤其是对多精度浮点多项式和复杂算术运算更是不实用.我们的方法是根据,预先计算类多项式,然后再在预存的集合中查找相应的素数,实践证明我们的算法具有较高的效率. In using elliptic curves for cryptography,one often needs to construct elliptic curves with a given or known number of points over a given finite field.Atkin and Morain suggested the use of the theory of complex multiplication to construct such curves. But this method is efficient only when the degree of the class polynomial is small, in general, factoring a high degree polynomial is time consuming,Furthermore,the construction of the class polynomial requires multi-precision floating-point and complex number arithmetic. our method precalculates class polynomial as a separate of off-line process, We choose a discriminant and then search for an appropriate primes,In practice ,Our algorithm is quick and can be compactly code.
出处 《电脑知识与技术(过刊)》 2007年第20期420-421,424,共3页 Computer Knowledge and Technology
关键词 椭圆曲线 复乘算法 有限域 j-不变量 Elliptic Curve Complex Multiplication Algorithm Finite Field j-invariant
  • 相关文献

参考文献6

  • 1[1]A.O.L.Atkin and F.Morain.Elliptic curve and primality proving[J],Mathematics of Computation,61 (203):29-68,July 1993
  • 2[2]N.Koblitz.Primality of the number of points on an elliptic curve over a finite field[J],Pacific J.Math,131(1):157-165,1998.
  • 3[3]Joseph H.Silverman,The Arithmetic of elliptic curve[M],Graduate Text in Mathematics,160,Springer-Verlag New York,1986
  • 4[4]Amod Agashe,Kristin Lauter,Ramarathnam Venkatesan Constructing elliptic curve with a given number of point over a finite field[J],mathematics of Computation 200(3):130-137,2001
  • 5[5]Po-Yi Huang,Ming-Luan Hsieh,Generating elliptic curves over finite fields Part Ⅰ:Generating by complex Multiplication[J],Mathematics of computation,March 2000
  • 6[6]Erkay Savas,Thomas A.Schmidt,and Cetin K.Koc,Generating Elliptic Curves of Prime Order,Cryptographyic Hardware and Embedded[J] System-CHES 2001,C.K.Koc,D.Naccache,and C.Paar,edtors,Lecture Notes in computer Science No.2162,pages 145-161,springer Verlag,Berlin,Germany,May 13-16,2001

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部