期刊文献+

基于BP人工神经网络改进算法的数据挖掘技术应用研究 被引量:1

The Application Study of Data Mining Technology Base on Improved BP Algorithm of Artificial Neural Network
下载PDF
导出
摘要 在阐述数据挖掘技术的产生背景、过程和一些常用方法的基础上,针对原有BP神经网络算法效率较低、易陷入局部极小等不足,提出了一种改进的BP算法,并对其进行推理和验证;同时将其应用到病人数情况预测中。结果表明,与标准的BP算法相比,改进的BP算法具有更好的精度和更高的效率。 After elaborating the technology of the data mining,including the background,process,and some technologies in common use,this paper presents an improved BP arithmetic aiming at the existed problem of inefficient and easily getting into local minimum.The paper has reasoned it not only in theories,but also in experiments.Finally the paper shows its application to the forecast of the patients' quantity.Compared with the standard BP arithmetic,the improved BP arithmetic is even faster,and more precise.
作者 黄晓亚
出处 《南通职业大学学报》 2007年第4期68-71,共4页 Journal of Nantong Vocational University
关键词 数据挖掘 人工神经网络技术 BP算法 改进的BP算法 data mining the technology of artificial neural network BP arithmetic the improved BP arithmetic
  • 相关文献

参考文献4

二级参考文献21

  • 1胡守仁 余少波.神经网络导论[M].长沙:国防科技大学出版社,1992.113-129.
  • 2Mills P M, Zomaya A Y, Tade M O. Adapative model-based control using neural networks control[J]. 1994, 60:32-35.
  • 3Frier A, Karlton P, Kocher P. The SSL 3.0 Protocol[M]. USA:Netscape, 1996.
  • 4Rivest R. RFC 1321, The MD5 Message Digest Algorithm[S].
  • 5George Apostolopoulos, Vincd Peris, Prashant Pradhan, et al. Securing electronic commerce reducing the SSL overhead[J]. IEEE Network, 2000,(7-8):8-16.
  • 6顾震隆.复合材料的发展现状及我国复合材料面临的问题[J].力学与实践,1998,23(2):23-26.
  • 7Taylor K K,Darsey J A.Prediction of the electronic properties of polymers using artificial neural networks[J].Polymer Preprints,2000,41(1):331-332.
  • 8Cherian R P,Smith L N,Midha P S.A neural network approach for selection of powder metallurgy materials and process parameters[J].Artificial Intelligence in Engineering,2000,80(14):39-445.
  • 9Chen M S. Han J W. Yu P S. Data Mining: An Overview from a Database Perspective[J]. IEEE Transaction on Knowledge and Data Engineering. 1996. 18 (6): 1-41.
  • 10Groth R. Data Mining: Buiding Competitive Advantage [M]. New Jersey: Prentice Hall,1999.

共引文献74

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部