期刊文献+

S_1~4中具有零Gauss-Kronecker曲率的极大超曲面

Maximal Hypersurfaces with zero Gauss-Kronecker Curvature in the de Sitter Space S_1~4
下载PDF
导出
摘要 构造了de Sitter空间S1中的一类具有零Gauss-Kronecker曲率的极大超曲面,它们是双曲空间H4中一类极小浸入曲面ξ:V→H 4的"Polar Map"像。 in is paper,one construct a class of maximal hypersurfaces in the de Sitter space S14 with zero Gauss-Kronecker Curvature,which are the images of olar mas of minimally immersed surfacesξ:V→H4 in the 4-dimensional hyperbolic space.
出处 《安阳工学院学报》 2007年第6期92-94,共3页 Journal of Anyang Institute of Technology
关键词 Gauss-Kronecker曲率 极大超曲面 DE SITTER空间 Gauss-Kronecker curvature maximal hypersurface de Sitter space
  • 相关文献

参考文献6

  • 1[1]M Dajczer,D Gromoll.Gauss parametrizatios and rigidity aspects of sub-manifolds[J].Differential Geom,1985(22):1-12.
  • 2[2]S C de Almeida,F G B Brito.Minimal hypersurfaces of S4 with constant Gauss-Kronecker curvature[J].Math,Z.1987(195):99-107.
  • 3[3]J Ramanathan.Minimal hypersurfaces in S4 with vanishing Gauss-Kronecker curvature[J].Math.Z.1990(205):645-648.
  • 4[4]T Hasanis.A.Savas-Hailiaj and T.Vlachos,Minimal hypersurfaces with zero Gauss-Kronecker curvature,Illinois[J].Math.,To appear.
  • 5[5]T Hasanis.A.Savas-Hailiaj and T.Vlachos,Complete minimal hypersurfaces of S4 with zero Gauss-Kronecker curvature,Preprint.
  • 6[6]T Hasanis,A Savas-Hailiaj and T.Vlachos,Complete minimal hypersurfaces in the hyperbolic space with vanishing Gauss-Kronecker curvature,Trans.Amer.Math.Soc.,To appear.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部