摘要
目前对板片空间结构缺陷的研究主要集中在数值分析方面,尝试基于Koiter理论进行近似解析方法的研究。通过把板片空间结构的网架或网壳部分连续化为板或壳,将板片空间结构简化为双层板或双层壳。再分别对完善的双层板和双层壳进行大挠度方程求解,研究完善结构的初始后屈曲性能。在求解大挠度方程时,省略了边界条件中的耦合项,从而能够应用伽辽金法求解。最后基于Koiter理论,得出板型板片空间结构对缺陷不敏感,而扁壳型板片空间结构对缺陷敏感的结论。
Now the study of the sheet spatial structure's imperfection is mainly focused on the aspects of numerical analysis.This paper tries to doing the study of the approximate analytical methods based on Koiter's theory.By treating the dome frames' or the reticulated shells'part of the sheet spatial structure into continuous plate or shell,the sheet spatial structure is simplified to double-layer plate or double-layer shell.Then through solving the perfect double-layer plate and double-layer shell by large deflection equation,the post-buckling performance of the perfect structure has been studied.The coupling terms have been ignored in the boundary condition when solving large deflection equation,so the result can be got by using Galerkin Method.At last,the conclusion that the plate-shaped sheet spatial structure is not sensitive to imperfection and the shallow shell-shaped sheet spatial structure is sensitive to imperfection based on Koiter theory.
出处
《工业建筑》
CSCD
北大核心
2007年第z1期635-637,共3页
Industrial Construction
基金
国家自然科学基金项目资助(10672039)
教育部科学技术研究重点项目资助(105083)
关键词
Koiter理论
板片结构
缺陷敏感性
稳定
Koiter's theory sheet spatial structure imperfection sensitivity stability