期刊文献+

基于HMM/ANN混合模型的带噪语音识别 被引量:3

Noise Speech Recognition Based on HMM/ANN
下载PDF
导出
摘要 对于含噪语音信号的有效特征提取是语音识别至关重要的一步。该文提出了利用小波调制尺度对语音进行特征提取,结合隐马尔可夫和人工神经网络混合模型进行识别的方法,可进一步反映语音信号的动态特性、增强抗干扰能力和提高识别率。实验证明,该模型适合于对噪声背景下的语音进行识别,同传统的HMM模型相比,具有更好的抗噪鲁棒性,在信噪比较低情况下,识别率比传统的HMM模型有明显的提高。 In speech recognition it is a vital step to extract the effective features of noisy speech signal.This paper presents a new method to extract effective features of noisy speech signal using wavelet modulate scale.Artificial neural network and hidden Markov model were also used to improve the dynamic of speech signal,enhance anti-interference ability and advance speech recognition rate.Experiment showed this model was better than HMM in recognition rate and robustness of noisy signal.
出处 《杭州电子科技大学学报(自然科学版)》 2007年第3期17-20,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 语音识别 小波调制尺度 隐马尔可夫/自组织神经网络 speech recognition wavelet modulate scale HMM/ANN
  • 相关文献

参考文献6

  • 1[1]Boll S.Suppression of acoustic noise in speech using spectral subtraction[J].IEEE and Signal processing,1979,27 (2):113 -120.
  • 2马昕,杜利民.基于小波调制尺度的语音特征参数提取方法[J].计算机应用,2005,25(6):1342-1344. 被引量:3
  • 3[3]Furuis,Itoh D.Neural-network-based HMM adaptation for noisy speech[C].Processing of 2001 IEEE International conference on ASSP,2001:365-368.
  • 4杨大利,徐明星,吴文虎.噪音环境下的语音识别研究[J].计算机工程与应用,2003,39(20):1-4. 被引量:8
  • 5[5]Mallat S.A theory of multiresolution signal decomposition:The wavelet transform[J].IEEE Trans,1989,11 (7):647-693.
  • 6[6]杨行峻,迟惠生.语音数字信号处理[M].北京:电子工业出版社,2000:129-130.

二级参考文献28

  • 1郑方 吴文虎 等.CDCPM及其在语音识别中的应用[J].软件学报,1996,7(10):69-75.
  • 2Philippe Gelin,Jean-Claude Junqua.Techniques for robust speech recognition in the car environment[C].In:EuroSpeech99,1999.
  • 3Mallat S,Hwang W L.Singularity Detection and processing with wavelet[J].IEEE Trans on Information theory,1992;38(2):617-643.
  • 4Donoho,David L.De-noising by sofi-thresholding[J].IEEE Trans on Information Theory, 1995 ;41 (3) :613-627.
  • 5Yang Dali,Xu Mingxing,Wu Wenhu et al.A Noise Cancellation Method Based on Wavelet Transform[C].In:The Second International Symposium on Chinese Spoken Language Processing(ISCSLP)Beijing, 2000.
  • 6Tim Haulick,Klaus Linhard,Peter Schr.Ogmeier.Residual Noise Suppression Using Psychoacoustic Criteria[C].In:EuroSpeech97,1997.
  • 7J Haekkinen,J Suontausta,R Hariharan et al.Improved Feature Vector Normalization For Noise Robust Connected Speech Recognition[C].In: EuroSpeech99,1999.
  • 8O Viikki,D Bye,K Laurila.A recursive feature vector normalization approach for robust speech recognition in noise[C].In :IEEE International Conference on Acoustics,Speech,and Signal Processing,Seattle, WA, USA, 1998:733-736.
  • 9O Siohan,Y Gong,J P Haton.Comparative experiments of several adaptation approaches to noisy speech recognition using stochastic trajectory models[J].Speech Communication, 1996; 18:335-352.
  • 10Cun-tai Guan, Shu-hung Leung,Wing-hong Lau.A Space Transformation Approach for Robust Speech Recognition in Noisy Environments[C].In : EuroSpeech97,1997 ; 3 : 1591-1594.

共引文献8

同被引文献19

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部