期刊文献+

基于MCMC方法的粒子滤波改进算法 被引量:5

The Improved Particle Filter Algorithm Based on MCMC Methods
下载PDF
导出
摘要 粒子滤波算法广泛应用于现代的跟踪与定位,它适用于非线性非高斯系统,其算法的性能很大程度上取决于重要性分布的选择。分析粒子滤波的原理,论述蒙特卡罗方法在贝叶斯分析中的应用,同时将蒙特卡罗方法引入粒子滤波算法的实现中,通过仿真实验结果比较分析了改进的粒子滤波算法的性能。 Particle filter is widely used in the tracking and location application,especially it can be used in nonlinear and non-Gaussian system.The performance of particle filter algorithm almost lies on the selection of the proposal importance distribution.This paper analyze the principle of particle filter,and explain the application of MCMC in the Bayes analysis,and using MCMC method to improve the particle filter.The performance of the improved particle filter is given out by simulation results.
出处 《杭州电子科技大学学报(自然科学版)》 2007年第6期52-55,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 粒子滤波 马尔可夫链蒙特卡罗方法 非线性估计 particle filter MCMC nonlinear estimation
  • 相关文献

参考文献6

  • 1[1]Xiong K,Zhang H Y,Chan C W.Performance evaluation of UKF based nonlinear filtering[R].Beijing:Beihang University.Automatica,2006,42 (2):261-270.
  • 2[2]Doucet A,Godsill S J,Andrieu C.On sequential Montecarlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 3[3]Sanjeev M Arulampalam,Ristic B,Gordon N.Bearings-only tracking of manoeuvring targets using particle filters[J].Eurasip Journal on Applied Signal Processing,2004,(15):2351-2365.
  • 4[4]龚光,钱敏平.应用随机过程及其在算法与智能计算中的应用[M].北京清华大学出版社,2003:203-221.
  • 5[5]Spall J C.Estimation via Markov Chain Monte Carlo[J].IEEE Control Systems Magazine,2003,23(2):34-45.
  • 6雷明,韩崇昭,肖梅.扩展卡尔曼粒子滤波算法的一种修正方法[J].西安交通大学学报,2005,39(8):824-827. 被引量:9

二级参考文献7

  • 1Wan E, van der Merwe R. The unscented Kalman filter for nonlinear estimation [A]. Adaptive Systems for Signal Processing, Communications,and Control Symposium, Lake Louise, Alta, USA, 2000.
  • 2van der Merwe R, Wan E. The square-root unscented Kalman filter for state and parameter estimation [A].2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salts Lake City, USA, 2001.
  • 3Kotecha J, Djuric P. Gaussian sum particle filtering[J]. IEEE Transactions on Signal Processing,2003, 51(10):2 602-2 612.
  • 4Kotecha J, Djuric P. Gaussian particle filtering [J]. IEEE Transactions on Signal Processing, 2003,51(10):2 592-2 601.
  • 5Beadle E,Djuric P. A fast-weighted Bayesian bootstrap filter for nonlinear model state estimation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1):338-343.
  • 6Press W,Teukolsky S, Vetterling W, et al. Numerical Recipes in C: the art of scientific computing [M]. 2nd edition. Cambridge, England: Cambridge Univ Press,1992.
  • 7van der Merwe R, Douce A, de Freitas N, et al. The unscented particle filter [R]. Technical Report of the Cambridge Univ Engineering Department CUED/F-INFENG/TR, 380. England: Cambridge University Press,2000.1-45.

共引文献8

同被引文献135

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部