期刊文献+

算子代数上的广义导子 被引量:1

Generalized Derivations on an Operator Algebras
下载PDF
导出
摘要 设A是B(H)的子代数且含单位算子,φ是A从到自身的线性映射且在Z∈A处广义可导,即S,T∈A且ST=Z时,φ(ST)=φ(S)T+Sφ(T)-Sφ(I)T成立。若φ在Z∈A处广义可导时是广义导子,则称Z是φ在A上的全广义可导点。该文证明了诺伊曼代数的每个可逆元是其上范数拓扑连续线性映射的全广义可导点。 Let be a sub-algebra of with a unit operator,where is a complex separable Hilbert space.We say that a linear mapping from into itself is a generalized derivable mapping at if for any with.We say that an operator is an all-generalized-derivable point of for the norm-topology if every norm-topology continuous generalized derivable mapping at is a generalized derivation.In this paper,we get the following main result: every invertible operator in Von Neumann algebra is an all-generalized point for the norm-topology.
作者 张林 朱军
出处 《杭州电子科技大学学报(自然科学版)》 2007年第6期94-96,共3页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 套代数 冯诺伊曼代数 广义导子 约当广义导子 全广义可导点 nest algebra Von Neumann algebra generalized derivation all-generalized point
  • 相关文献

参考文献6

  • 1[1]Jing Wu,Lu Shijie.Characterizations of derivations on some operator algebras[J].Bull Austral Math Soc,2002,66(2):227-232.
  • 2[2]Zhu Jun,Changping Xiong.Derivable mappings at unit operator on nest algebras[J].Linear Algebra and its Applications,2007,22(2):721-735.
  • 3[3]Zhu Jun.All-derivable point of operator algebras[J].Linear Algebra and Its Application,2007,27(1):1-5.
  • 4朱军,熊昌萍.环上的广义导子与Von Neumann代数上的P-核值保持映射[J].数学学报(中文版),1998,41(4):795-800. 被引量:19
  • 5[5]Dixmier J.Von Neumann Algebras[M].Amsterdam:North-Holland Publishing Company,1981:45-46.
  • 6[6]Longstaff W E.Strongly reflexive lattices[J].London Math Soc,1975,11(4):491-498.

二级参考文献3

共引文献18

同被引文献10

  • 1LI J,PAN Z.On dervable mappings[ J].J Math AnalAppl,2011,374:311-322.
  • 2HOU J,QI X.Additive maps derivable at some points onJ-subspace lattice algebra [ J].Linear Algebra Appl,2008,429:1851-1863.
  • 3JING W,LU S,LI P.Characterization of derivations onsome operator algebra [ J].Bull Austral Math Soc,2002,66:227-232.
  • 4JIAO M,HOU J.Additive maps derivable or Jordan deriv-able at zero point on nest algebra [ J].Linear AlgebraAppl,2010,432:2894-2994.
  • 5LI J,PAN Z,XU H.Characterizations of isomorphism , sand derivations of some algebras[ J].Linear Algebra Ap-pl,2007,332:1314-1322.
  • 6HOU J,AN R.Additive maps on rings behaving like der-ivations at idempotent-product elements [ J].Journal ofure and Applied Algebra,2011,215:1852-1862.
  • 7Had win L,Local multiplications on algebra spanned byidempotents [ J].Linear and Multilinear Algebra,1994,37:259-263.
  • 8ERDOS J.Operator of finite rank in nest algebra[ J].JLondon Math Soc,1968,43:391-397.
  • 9龚小兵,周琼,潘超,张涛.B值鞅不等式[J].内江师范学院学报,2008,23(10):19-20. 被引量:3
  • 10朱军,熊昌萍.Nest代数上的在零点广义可导映射[J].数学学报(中文版),2002,45(4):783-788. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部