摘要
This paper introduced a robust parameter coordination method to analyze parameter uncertainties so as to predict conflicts and coordinate parameters in multidisciplinary design. The proposed method is based on constraints network, which gives a formulated model to analyze the coupling effects between design variables and product specifications. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. To solve this constraint network model, a general consistent algorithm framework is designed and implemented with interval arithmetic and the genetic algorithm, which can deal with both algebraic and ordinary differential equations. With the help of this method, designers could infer the consistent solution space from the given specifications. A case study involving the design of a bogie dumping system demonstrates the usefulness of this approach.
This paper introduced a robust parameter coordination method to analyze parameter uncertainties so as to predict conflicts and coordinate parameters in multidisciplinary design. The proposed method is based on constraints network, which gives a formulated model to analyze the coupling effects between design variables and product specifications. In this model, interval boxes are adopted to describe the uncertainty of design parameters quantitatively to enhance the design robustness. To solve this constraint network model, a general consistent algorithm framework is designed and implemented with interval arithmetic and the genetic algorithm, which can deal with both algebraic and ordinary differential equations. With the help of this method, designers could infer the consistent solution space from the given specifications. A case study involving the design of a bogie dumping system demonstrates the usefulness of this approach.
基金
National Natural Science Foundation of China(No. 60304015, No. 50575142)