期刊文献+

可数生成子代数的自反性,分离向量和自反性

The Reflexivity of an Accountable Generated Algebra,Separate Vector and Reflexivity
下载PDF
导出
摘要 设A是B(X,H)的可数生成子代数,本文验证了A在什么条件下是(拓扑)代数自反的,得到两个重要结论: 1、若AF=|0|,则A是(拓扑)代数自反的;2、若AF具有有限维支撑,则A是(拓扑)代数自反的充要条件是AF是(拓 扑)代教自反的。 A is an accountable generated algebra of B (X, H). We proved A is (topologically) algebraically reflexive under what condition. Two important results are obtained in this article. One is that if AF = {0}, then A is (topologically) algebraically reflexive. The other is that if the support of AF has definite dimension, then A is (topologically) algebraically reflexive if AF is (topologically) algebraically reflexive.
出处 《景德镇高专学报》 2004年第4期10-12,共3页 Jingdezhen Comprehensive College Journal
关键词 (拓扑)代数自反 分离向量 (拓扑)代数自反包 ((topologically) algebraically) reflexive separate vector ((topologically) algebraically) reflexive closure
  • 相关文献

参考文献2

  • 1[1]Larson.D.R:Reflexivity.algebraic reflexivity and linear interpolation.Amer[J].Math, 1988.110:283-299
  • 2[2]Ding lifeng.on strictly separating vectors and reflexivity[J].Integral Eqs.Operator Theory ,1994.19:373-380

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部