期刊文献+

城市工业区对沉积到密歇根湖的持久性有机污染物的数量和变化的影响

The Impact of an Urban-Industrial Region on the Magnitude and Variability of Persistent Organic Pollutant Deposition to Lake Michigan
下载PDF
导出
摘要 为密歇根湖建立了气相多氯联苯和反式一九氯杀虫剂的预测模型,考查所得数据可得出发展趋势。在本文中,我们叙述模型的结果以显示来自芝加哥地区的一股污染物的数量和它的变化如何对整个湖泊净污染物沉降的高度变动范围起作用。对整个湖泊来说,虽然年净气体交换与零没有多大区别,多氯联苯的年总沉降量约为3200kg。数据驱动模型显示,从每一天来说,持久性有机污染物(POPs)的净交换是否能从净沉降变成净挥发,这要看每股污染物影响的面积。这些研究发现说明:①城市地区的控制能加速湖泊(污染物)的挥发;②从市区释放的POPs大半是挥发过程的结果。 A predictive model for gas-phase PCBs and trans-nonachlor over Lake Michigan has been constructed and the resulting data examined for trends. In this paper, we describe the model results to show how the magnitude and variability of a plume of contaminants from the Chicago area contributes to a highly variable region of net contaminant deposition over the entire lake. For the whole lake, gross annual deposition of PCBs is ~3200 kg, although the net annual gas exchange is not significantly different from zero. The data-driven model illustrates that on a daily basis, the net exchange of persistent organic pollutants (POPs) can change from net deposition to net volatilization depending on the area of plume impact. These findings suggest that i) control of urban areas can accelerate the rate of volatilization from lakes; and ii) release of POPs from urban areas is largely a result of volatilization processes.
出处 《AMBIO-人类环境杂志》 2003年第6期406-411,共6页
  • 相关文献

参考文献38

  • 1[1]Darvill, T., Lonky, E., Reihman, J., Stewart, P. and Pagano, J. 2000. Prenatal exposure to PCBs and infant performance on the Fagan Test of Infant Intelligence. Neurotoxicol. 21, 1029-1038.
  • 2[2]Jacobson, J.L., Fein, G.G., Jacobson, S.W., Schwartz, P.M. and Dowler, J.K. 1985. The effect of intrauterine PCB exposure on visual recognition memory. Child Develop. 56, 853-860.
  • 3[3]Schneider, A.R., Stapleton, H.M., Cornwell, J. and Baker, J.E. 2001. Recent declines in PAH, PCB, and toxaphene levels in the northern Great Lakes as determined from high resolution sediment cores. Environ. Sci. Technol. 35, 3809-3815.
  • 4[4]Manchester-Neesvig, J.B. andAndren, A.W. 1989. Seasonal variation in the atmospheric concentration of polychlorinated biphenyl congeners. Environ. Sci. Technol. 23, 1138 1148.
  • 5[5]Hoff, R.M., Muir, D.C.G. and Grift, N.P. 1992. Annual cycle ofpolychlorinated biphenyls and organohalogen pesticides in air in southern Ontario. 1. Air concentration data. Environ.Sci. Technol. 26, 266-275.
  • 6[6]Cortes, D.R., Basu, I., Sweet, C.W., Brice, K.A., Hoff, R.M. and Hires, R.A. 1998. Temporal trends in gas-phase concentrations of chlorinated pesticides measured at the shores of theGreat Lakes. Environ. Sci. Technol. 32, 1920-1927.
  • 7[7]Holsen, T.M. 1991. Dry deposition of polychlorinated biphenyls in urban areas. Environ. Sci. Technol. 25, 1075-1081.
  • 8[8]Mackay, D., Shiu, W.Y. and Ma, K.C. 1992. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Chelsea, MI: Lewis Publishing Co.
  • 9[9]Iwata, H., Tanabe, S. and Ueda, K. 1995. Persistent organochlorine residues in air, water, sediments, and soils from the Lake Baikal region, Russia. Environ. Sci. Technol. 29, 792- 801.
  • 10[10]Horvatin, P.J. 1993. Lake Michigan Mass Balance Budget / Mass Balance Work Plan, U.S. Environmental Protection Agency / Great Lakes National Program Office.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部