期刊文献+

氯乙酰苯胺除草剂及其降解产物在肯尼亚Nzoia流域的演变

The Fate of Chloroacetanilide Herbicides and Their Degradation Products in the Nzoia Basin, Kenya
下载PDF
导出
摘要 采用气相色谱法对肯尼亚沿Nzoia河9个地点的水样和沉积物样中草不绿(也称杂草锁)(α’-氯-N-(2,6-二乙基苯基)-N-(甲氧基甲基)乙酰胺)、甲氧毒草安(α-氯6’-乙基-N-(2甲氧基-1-甲基乙基)乙酰邻甲苯胺)及它们各自环境稳定的苯胺类降解物2,6-二乙基苯胺、2-乙基-6-甲基苯胺进行分析。降解物在90%以上的沉积物样和水样中检出,而母体化合物只在不到14%的水样中检出。沉积物中的杀虫剂和它们的降解物比在水中浓度高很多(1.4~10 800倍),显示出化合物在沉积物中的积累。在研究时间内沉积物中降解物的普遍存在意味着这些化合物的持续性。可以假定在热带气候为主的条件下,促使杀虫剂快速分解为环境稳定的降解物,从而在研究区域内使后者成为比其母体更重要的污染物。 Alachlor, metolachlor and their respective environmentally stable aniline degradation products, 2,6-diethylaniline and 2-ethyl-6-methylaniline were analyzed in water and sediment samples from 9 sites along River Nzoia, Kenya using gas chromatography. The degradation products were detected in > 90% of the sediment and water samples, while the parent compounds occurred in < 14% of the water samples. Much higher concentrations of the pesticides and their degradation products occurred in the sediment than in the water (1.4 up to 10 800-fold), indicating an accumulation of the compounds in the sediment. The constant occurrence of the degradation products in the sediment during the study period infers a persistence of these compounds. It is hypothesized that the prevailing tropical climatic conditions favor a quick breakdown of the pesticides to their environmentally stable degradation products, thereby making the latter more important pollutants than their parent products in the study area.
出处 《AMBIO-人类环境杂志》 2003年第6期424-427,共4页
  • 相关文献

参考文献43

  • 1[1]Lacher, T.E. and Goldstein, M.I. 1997. Tropical ecotoxicology: Status and needs. Environ. Toxicol. Chem. 16, 100-111.
  • 2[2]Partow, H. 1995. What Prospects for Pesticide Use in Kenya? A WWF Country Report. WWF Regional Office of East and Central Africa, Nairobi, Kenya, pp. 1-57.
  • 3[3]Kimmel, E.C., Cassida, J.E. and Ruzo, L.O. 1986. Formamidine insecticides and chloroacetanilide herbicides: disubstituted anilines and nitrosobenzenes as mammalian metabolites and bacterial mutagens. J. Agric. Food. Chem. 40, 1695-1699.
  • 4[4]Tessier, D.M. and Clark, J.M. 1995. Quantitative assessment of the mutagenic potential of environmental degradative products of alachlor. J. Agric. Food Chem. 43, 2504-2512.
  • 5[5]Gonzalez-Barreiro, C., Lores, M., Casais, M.C. and Cela, R. 2000. Optimisation ofalachlor solid-phase microextraction from water samples using experimental design. J. Chromatogr. A 896, 373-379.
  • 6[6]Bollag, J.-M., McGahen, L.L, Minard, R.D. and Liu, S.-Y. 1986. Bioconversion ofalachlor in an anaerobic stream sediment. Chemosphere 15, 153-162.
  • 7[7]Liu, D., Maguire, R.J., Pacepavicius, G.J., Aoyama, I. and Okamura, H. 1995. Microbial transformation ofmetolachlor. Environ. Toxicol. Water Qual. 10, 249-258.
  • 8[8]Stamper, D.M. and Tuovinen, O.H. 1998. Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor. Crit. Rev. Microbiol. 24, 1-22.
  • 9[9]Hamaker, J.W. 1972. Organic Chemicals in the Soil Environment, Marcel Dekker, New York.
  • 10[10]Gerstl, Z. 1991. Chemistry,Agriculture and the Environment. The Royal Society of Chemistry, London.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部