摘要
实际过程对象一般是动态非线性系统,然而前向神经元网络很难对动态系统进行建模,为解决这一问题,在RBF网络中引入输出反馈,使其适用于动态系统建模.为更有效地确定反馈RBF网络隐含层节点的个数,引入样本密度以及样本与输出目标的关联度,用较少的神经元实现网络的训练目标.仿真结果表明反馈RBF网络具有训练快,对样本需求少等特点;与其他建模方法的比较以及对实际对象的建模表明,反馈RBF网络对动态非线性系统建模是有效的、可行的.
出处
《控制工程》
CSCD
2003年第z2期99-101,共3页
Control Engineering of China