期刊文献+

激光单道与多道熔覆Ni+Cr_3C_2复合涂层的组织及硬度 被引量:13

Structure and Hardness of laser-clad Ni+Cr_3C_2 Composite Coatings with Single and Overlapping Clad Tracks
下载PDF
导出
摘要 对激光单道与多道搭接熔覆Ni+Cr3C2 复合涂层的组织、硬度及其影响因素进行了研究。在6 0mm× 1 0mm× 1 0mm(多道熔覆 )和 6 0mm× 2 0mm× 1 0mm(单道熔覆 )两种 45钢基材试样上 ,采用同一激光处理工艺参数 (P =1 7kW ,Vs=5mm·s- 1 ,D =3mm)熔覆同一涂层材料 (Ni + 50 %Cr3C2 ) ,涂层的成分、组织随搭接工艺不同 ( 0和 0 5搭接率 )而发生变化 ,使单道与多道熔覆层的显微硬度分别为1 1 0 0~ 1 2 0 0HV和 380~ 480HV。多道搭接熔覆产生的重稀释导致涂层中的硬质相数量明显少于单道熔覆层 ,是造成涂层硬度下降的主要影响因素。对激光熔池的凝固速率以及“二次加热”产生的熔道退火效应对涂层硬度的影响进行了分析。 The structure and hardness as well as their influential factors of laser\|clad Ni+Cr 3C 2 composite coatings with a single clad track (SCT) and overlapping clad tracks (OCTs) have been investigated. The composition and structure of the coatings change with different techniques of 0 and 0.5 overlapping under same laser treating parameters ( P =1 7kW, V s=5mm\5s -1 , D =3mm) to clad identical coating materials (Ni+50%Cr 3C 2) on 60mm×10mm×10mm and 60mm×20mm×10mm samples of 45 carbon steels. The microhardness of coatings with SCT and OCTs is 1100~1200HV and 380~480HV, respectively. The overdilution produced by OCTs,resulting in the amount of hard phases in the coating with OCTs to be obviously less than that of SCT,is the main influential factors for lowering hardness of the coatings. The influence of solidification rate in laser melt pools and annealing effect caused by repeated heating on hardness of the coating was also analysed.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2001年第3期23-27,共5页 Transactions of Materials and Heat Treatment
关键词 激光熔覆 多道搭接 Ni+Cr3C2复合涂层 组织 硬度 laser cladding overlapping clad \ Ni+Cr 3C 2 composite coading \ structures,hardness
  • 相关文献

参考文献10

  • 1[1]Gravanis G,Tsetsekou A,Zambetakis Th,Scournaras C,Hontzopoulos E. Ceramic coating and laser treatment[J] .Surf Coat Technol, 1991,45:245.
  • 2[2]Cooper K P, Slebodnick P,Thomas E D. Seawater corrosion behavior of laser surface modified Inconel 625 alloy[J]. Mater Sci Eng, 1996, A206:138.
  • 3[3]Wang P Z, Yang Y S, Ding G, Qu J X, Shao H S. Laser cladding coating against erosion-corrosion wear and its application[J]. Wear, 1997,209:96.
  • 4[4]Herman H,Shankar N R. Survivability of thermal barrier coatings[J] .Mater Sci Eng, 1987,88:69.
  • 5[5]Lei T C, Ouyang J H, Pei Y T, Zhou Y. Microstructure and wear resistance of laser clad TiC particle reinforced coating[J]. Mater Sci Technol, 1995,11:520.
  • 6[6]Kwok C T,Cheng F T, Man H C. Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance [J]. Surf Coat Technol, 1998,107: 31.
  • 7[7]Choi J, Mazumder J. Non-Equilibrium synthesis of Fe-Cr-C-W alloy by laser cladding[ J ]. J Mater Sci, 1994,29:4460.
  • 8[8]Li R, Ferreira M G S, Anjos M A, Vilar R. Localized corrosion of laser surface cladded UNS S31254 superaustenitic stainless steel on mild steel[ J]. Surf Coat Technol, 1996,88: 90.
  • 9[9]Tassin C,Laroudie F,Pons M,Lelait L. Carbide-reinforced coatings on AISI 316L stainless steel by laser surface alloying[J]. Surf Coat Technol, 1995,76~77:450.
  • 10[12]Abbas G, West D R F. Laser surface cladding of stellite and stellite-SiC composite deposite for enhanced hardness and wear[J]. Wear, 1991,143 (3):353.

同被引文献123

引证文献13

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部