期刊文献+

低维囚禁理想玻色气体的玻色——爱因斯坦凝聚 被引量:3

Bose-Einstein Condensation of an Ideal Bose Gas Trapped in the Low Dimensional Space
下载PDF
导出
摘要 应用局域密度近似(LDA)研究低维玻色气体的玻色-爱因斯坦凝聚(BEC),结果表明:对囚禁于外势中的玻色子来说,在低维情况下也有BEC,但其临界温度Tc,基态的粒子占据率No/N,热容量C在临界温度附近的连续性问题都与外势形式紧密相关。 By using the local density approximation, Bose-Einstein condensation of Bose gas in the low dimensional space is investigated. The results show that when a proper external potential is taken, BEC may occur in the low dimensional space. The critical temperature Tc, the ground state fraction N0/N and the behaviour (jump or not) of the heat capacity C depend on the shape of the potential.
作者 刘静宜
出处 《漳州师范学院学报(自然科学版)》 2001年第2期35-41,共7页 Journal of ZhangZhou Teachers College(Natural Science)
关键词 玻色气体:玻色—爱因斯坦凝聚:幂函数型外势 Bose gas, Bose-Einstein condensation, generic power-law potential
  • 相关文献

参考文献10

  • 1[1]Anderson M H,Ensher J R, Matthews M R, Wieman C E and Comell E A [J].Science 1995,269:198
  • 2[2]Bradley C C,Sackett C A,Tollett J J and Hulet R G [J].Phys. Rev. Lett. 1995,75(9):1687
  • 3[3]Davis K B,Mewes M-O,Andrew M R,van Druten N J,Durfee D S,Kurn D M and Ketterle W [J].Phys. Rev.Lett.1995,75(22):3969
  • 4孙昌璞.原子系统的宏观量子效应[J].科学,1999,51(6):19-22. 被引量:4
  • 5[2]汪志诚.热力学与统计物理[M].北京:高等教育出版社,1993.
  • 6陈丽璇,严子浚,郑金成,林仲金.简谐势阱中的理想玻色气体[J].厦门大学学报(自然科学版),1997,36(4):530-534. 被引量:6
  • 7[7]Bagnato V, Pritchar D.E and Kleppner D [J]..Phys. Rev. A 1987,35(10):4354
  • 8[8]Bagnato V and Kleppner D [J].Phys. Rev.A 1991,44(11):7439
  • 9[9]Chou T T,Yang C N and Yu L H [J].Phys. Rev.A 1996,53(6):4257
  • 10[10]Chen L. Yah Z, Li M and Chen C [J].J.Phys. A:Math. Gen. 1998,31:8289

二级参考文献1

  • 1汪志诚,热力学统计物理,1993年,286页

共引文献9

同被引文献25

  • 1H.E.Kandrup. Mixing and "violent relaxation"for the one-dimensional gravitational Coulomb gas[J]. Phys.Rev.A, 1989, 40: 7265-7274.
  • 2A.R.Plastino, A.Plastino. Stellar polytropes and Tsallis'entropy[J]. Phys.Lett.A, 1993, 174: 384-396.
  • 3D.F.Torres, H.Vucetich, A.Plastino. Early universe test of nonextensive statistics[J]. Phys.Rev.Lett., 1997, 79: 1588-1590.
  • 4M.L.Lyra, C.Tsallis. Nonextensivity and multifractality in low-dlmensional dissipative systems[J]. Phys.Rev.Lett., 1998, 80: 53-56.
  • 5D.H.Zanette, P.A.Alemany. Thermodynamics of anomalous diffusion[J]. Phys.Rev.Lett., 1995, 75: 366-369.
  • 6D.Prato, C.Tsallis. Nonextensive foundation of Levy distributions[J]. Phys.Rev.E, 1999, 60: 2398-2401.
  • 7S.Abe, A.K.Rajagopal. Properties of convergence of nonextensive statistical distribution to the Levy distribution[J]. J.Phys.A, 2000, 33: 8723.
  • 8A.R.Plastino, A.Plastino. Information theory, approximate time dependent solutions of Boltzmann's equation and Tsallis' entropy[J]. Phys.Lett.A, 1994, 193: 251-258.
  • 9C.Tsallis, F.C.Sa Barreto, E.D.Loh. Generalization of the Planck radiation law and application to the microwave background radiation[J]. Phys.Rev.E, 1995, 52: 1447-1451.
  • 10R.ES.Andrade. Ising chain in the generalized Boltzmann-Gibbs statistics[J]. Physica A, 1991, 175: 285.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部