期刊文献+

平面上的太阳拓扑与α-细拓扑

The Sun Topology and a-fine Topologies in the Plane
下载PDF
导出
摘要 本文证明了平面上的太阳拓扑严格细于关于Riesz位势论的细拓扑(即a-拓扑,1< a<2 ),从而得到了如下严格包含关系式: 太阳拓扑a-细拓扑2-细拓扑欧氏拓扑。 In 1999 P. Pyrih proved that the sun topology is strictly finer than the fine topology from the logarithmic potential theory in the plane. In our paper it is proved that the sun topology is strictly finer that a-fine topology when 1<a<2, from Riesz potential theory. And from our conclusions and the known results follows the strictly conclusion relation formula: The sun topology a-fine topology fine topology Euclid topology.
作者 吴炯圻
出处 《漳州师范学院学报(自然科学版)》 2001年第3期1-5,共5页 Journal of ZhangZhou Teachers College(Natural Science)
基金 福建省自然科学基金资助课题(F00018).
关键词 太阳拓扑 细拓扑 位势论 Hausdorff测度 sun topology, fine topology, potential theory, Hausdorff measure.
  • 相关文献

参考文献8

  • 1[1]Aikawa H., Essen M. Potential theory--selected topics [M]. Berlin:Springer, 1996
  • 2[3]Faliconer K. Fractal Gemetry--mathematical foundations and applications [M]. New York: Wiley and Sons, 1990
  • 3[4]Horbaczewska G.Core density topologies[J]. Real Anal. Exchange 20:2(1994/95),416-417
  • 4[5]Landkof N.S, Foundations of modern potential theory[M], Berlin:Springer 1970
  • 5[6]Lukes. J, Maly. J, Zajicek. J, Fine Topology methods in real analysis and potential theory [M]. Berlin: Springer,1986
  • 6[7]Manfred Denken and Hiroshi Sato. Sierpinski casket as a Martin Boundary I; Martin kernels [J]. Potential Analysis 14(2001); 211~232
  • 7[8]Pyrih P. The sun topology in plane, Glusnik Mathematics[J]. 34:54(1999), 91 ~96
  • 8[9]Pyrih P. Separation of finely closed sets by finely open sets[J]. Real Anal. Exchange 21:1(1995/96), 345-348

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部