期刊文献+

基于云模型的时间序列预测 被引量:37

Time Series Prediction with Cloud Models in DMKD
下载PDF
导出
摘要 在日常生活中广泛存在着各种时间序列数据 ,发现时间序列知识、对时间序列进行预测正成为数据挖掘与知识发现的重要内容。首先提出了基于云模型的时间序列预测机制 ,该机制以云理论为知识表示的理论基础 ,提出了两种预测知识 :准周期变化规律和当前趋势 ,并综合两种不同粒度的预测知识实现了时间序列的预测。然后着重于运用云模型进行知识表达、定量数值与定性知识的转换以及综合不同时间粒度的知识进行时间序列预测。 In our daily life, there are various kinds of time series data, and time series prediction becomes one of the important aspects of Data Mining and Knowledge Discovery (DMKD). This paper presents a new mechanism of time series prediction based on cloud models. Cloud theory is introduced as the theoretical basis of the mechanism. Two kinds of predictive knowledge, quasi periodical regularity and current tendency are proposed which are represented by different granularities as predictive linguistic rules and current cloud respectively, and summed up by synthesized cloud. Soft inference is realized to get the predictive results in several forms. We focus this paper on the be application of cloud theory to transform between quantitative and qualitative knowledge, synthesize different kinds of knowledge and realize the soft inference.
出处 《解放军理工大学学报(自然科学版)》 EI 2000年第5期13-18,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划 (863计划 )资助项目 !(863 -3 0 6-ZT0 6-0 7-2 ) 国家重点基础研究发展规划 (973计划 )资助项目 !(G19980 3 0
关键词 数据挖掘 时间序列预测 云模型 预测语言规则 综合云 data mining time series prediction cloud models predictive linguistic rule synthesized cloud
  • 相关文献

参考文献11

  • 1[1]Francoise F, Samy B, Daniel C. On the prediction of solar activity using different neural network models [J/OL]. http://www.syntim.inria.fr/fractales, 1998-05-01.
  • 2[2]Claudio B, Wang X S, Sushil J, et al. Discovering frequent event patterns with multiple granularities in time sequences [J]. IEEE Transactions on Knowledge and Data Engineering, 1998,10(2):222-237.
  • 3[3]Park D C, El-Sharkawi M A, Marks R J. Electric load forecasting using an artificial neural network [J]. IEEE Transaction on Power Systems, 1991,6(2):442-449.
  • 4[4]Varfis A, Versino C. Univariate economic time-series forecasting by connectionist methods [C]. In Proceeding of the International Neural Network Conference (INNC), Paris, France, 1990:342-345.
  • 5[5]Dietterich T G, Michalski R S. Learning to predict sequences, machine learning [M]. An Artificial Intelligence Approach, 1986.
  • 6[6]Li D Y, Han J W, Shi X M, et al. Knowledge representation and discovery based on linguistic atoms [J]. Knowledge-Based System, 1998,10:431-440.
  • 7[7]Li D Y, Di K C, Li D R. Mining association with linguistic cloud models [C]. PAKDD'98. Proceeding of the Second Pacific-Asia Conf. on Knowledge Discovery & Data Mining Melibourne, Australia, Springer-Verlag Heidelberg, 1998.
  • 8[8]Li D Y, Shi X M, Paul W, et al. Soft inference mechanism based on cloud models [C]. Logic Programming and Soft Computing, Reach Studies Press, 1997.
  • 9蒋嵘,李德毅,范建华.数值型数据的泛概念树的自动生成方法[J].计算机学报,2000,23(5):470-476. 被引量:73
  • 10杨朝晖,李德毅.二维云模型及其在预测中的应用[J].计算机学报,1998,21(11):961-969. 被引量:126

二级参考文献18

  • 1李德毅.发现状态空间理论[J].小型微型计算机系统,1994,15(11):1-6. 被引量:25
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1238
  • 3陈晖 李德毅.正态云模型及其在KDD中的应用[J].通信工程学院学报,1998,12(4):39-44.
  • 4李德毅,Proc 1st International Workshop on Logic Programming and Soft Computing, Theory & Applications, Joint International Conference and Symposium on Logic Programming,1996年,38页
  • 5李德毅,Proc KDD’96,1996年,250页
  • 6杨朝晖,硕士学位论文,1993年
  • 7吴国富,实用数据分析方法,1992年
  • 8李屹,硕士学位论文,1997年
  • 9Fan J,Proceedings of the 3rd Pacific-Asia Conference OnKnowledge Discovery & Data Mini,1999年,26页
  • 10范建华,博士学位论文,1999年

共引文献190

同被引文献412

引证文献37

二级引证文献587

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部