期刊文献+

二维相移耦合振子系统斑图的缺陷效应

Defects Effects of Pattern Formation in a Two-dimensional Array of Oscillators with Phase-shifted Coupling
下载PDF
导出
摘要 考察了在考虑不同阻挫时,极限环振子耦合系统的斑图动力学行为.每个极限环振子只与其最近邻的4个振子相互作用.螺旋波斑图,湍流和西洋棋盘斑图等都被观察到.我们使耦合系统中极大部分都以相同的相移,其中随机选择少量的耦合以不同的相移,称之为缺陷.当没有缺陷时,整个二维系统呈现出来的是螺旋波斑图结构,当随机改变其中的较少的联接属性(相移)时,就会出现靶波,当缺陷进一步增加时,靶波又会消失,这是个渐变的过程. Pattern formations in a two-dimensional array of coupled limited-cycle oscillators with phase shift coupling are discussed.Each oscillator is allowed to interact with its nearest neighbors.The system exhibits various patterns including spiral-waves with phase-randomized cores,and turbulence and checkerboard pattern,etc.Target waves were investigated in the system of heterogeneous media with different phase shift with most of other oscillators.Impurities induced target waves were found.
作者 张廷宪
出处 《曲靖师范学院学报》 2006年第6期52-55,共4页 Journal of Qujing Normal University
基金 云南省教育厅科学研究基金项目"耦合非线性振子系统的网络动力学研究"(06Y061A)
关键词 极限振子 随机相移耦合 斑图 靶波 limited-cycle oscillator phase-shift coupling pattern formation target wave
  • 相关文献

参考文献10

  • 1[1]Kuramoto Y.Chemical Oscillations,Waves,and Turbulence[M].Berlin:Spring-Verlag,1984.
  • 2[2]ZHENG ZHI-GANG(郑志刚).FRUSTRATION EFFECT ON SYNCHRONIZATION AND CHAOS IN COUPLED OSCILLATORS[J].CHINESE PHYSICS,2001,10(8):703~705.
  • 3[3]Zheng Z G,Hu G,Hu B.Phase Slip and Phase Synchronization of Coupled Oscillators[J].Physical Review Letters,1998,81:5318~5321.
  • 4张廷宪,郑志刚.耦合极限环系统同步的振幅效应[J].北京师范大学学报(自然科学版),2004,40(2):191-195. 被引量:5
  • 5[5]Tsimring L S,Rulkov N F,Larsen M L,Gabbay M.Repulsive Synchronization in an Array of Phase Oscillators[J].Physical Review Letters,2005,95:014201.
  • 6[6]Pan-Jun Kim,Tae-Wook Ko,Hawoong Jeong,Hie-Tae Moon.Pattern formation in a two-dimensional array of oscillators with phase-shift coupling[J].Physical Review E,2004,70:065201(R).
  • 7[7]Matthews P C,Strogatz S H.Phase Diagram for the Collective Behavior of Limit-Cycle Oscillators[J].Physical Review Letters,1990,65:1701~1704.
  • 8[8]Sakaguchi H.,Shinomoto S.and Kuramoto Y.Mutual Entrainment in Oscillator Lattices with Nonvariational Type Interaction.1988,79:1069.
  • 9[9]Blasius Bernd,Tjes Ralf.Quasiregular Concentric Waves in Heterogeneous Lattices of Coupled Oscillator[J].Physical Review Letters,2005,95:084101~084104.
  • 10[10]Ellison R,Gardner V,Lepak J,etc.Pattern formation in small arrays of locally coupled oscillators[J].International Journal of Bifurcation and Chaos,2005,15:2283~2293.

二级参考文献7

  • 1[1]Winfree A T. Biological rhythms and the behavior of populations of coupled oscillators[J]. J Theoret Biol,1967, 16:15
  • 2[2]McClintock M K. Menstrual synchrony and suppression[J]. Nature, 1971, 229:244
  • 3[3]Glass L. Synchronization and rhythmic processes in physiology[J]. Nature, 2001, 410:277
  • 4[4]Kuramoto Yoshiki, Nishikawa Ikuko. Statistical macrodynamics of large dynamical systems:case of a phase transition in oscillator communities[J]. Journal of Statistical Physics, 1987,49:569
  • 5[5]Mattews P C, Strogatz S H. Phase diagram for the collective behavior of limit-cycle oscillators[J]. Phys Rev Lett, 1990, 65(14):1701
  • 6[6]Zheng Zhigang, Hu Gang, Hu Bamb. Phase slips and phase synchronization of coupled oscillators[J]. Phys Rev Lett, 1998, 81(24):5318
  • 7[7]Hu Bamb, Zheng Zhigang. Phase synchronizations:transitions from high-to low-dimensional rori through chaos[J]. International Journal of Bifurcation and Chaos, 2000, 10(10):2399

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部