期刊文献+

RLW方程双孤立子碰撞的数值计算 被引量:1

On Numerical Calculation of Two Solitary Waves Solutions with RLW Equation
下载PDF
导出
摘要 给出数值分析RLW方程的三次样条差分方法 ,得到对时间四阶精度、空间二阶精度的三点三层隐式格式 .并对单孤立子的行进演化以及双孤立子的追赶、迎头碰撞演化进行数值实验 ,数值计算结果表明 ,碰撞是弹性的 .尽管将波形放大以后会出现振荡尾波 ,但这并非是真实的物理现象 ,而是数值计算精度所致 。 The numerical scheme of the cubic spline difference approximations for the regularized long-wave(RLW)equation is described with second-order and fourth-order accuracies for the time and spacing variables respectively.The interaction of head-on or catch up collision of two solitary wave solutions of the RLW equation examined numerically.The numerical results show that the waveforms do not change as the error less than O(10 -3 )is omitted.And the elastic effect of a collision of solitary waves exhibit tru...
出处 《内蒙古民族大学学报(自然科学版)》 2001年第4期356-360,共5页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 内蒙古自然科学基金资助项目 ( 940 6 )
关键词 RLW方程 孤立子 三次样条差分方法 数值计算 RLW equation Soliton Cubic spline finite difference method Numerical calculation
  • 相关文献

参考文献6

  • 1Korteweg D J,de Vries G.On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves〔J〕[].Philosophical Magazine.
  • 2Eilbeck J C,McGuire G R.Numerical study of the regularized long-wave equation Ⅱ: Interacion of solitary waves〔J〕[].Journal of Computational Physics.1977
  • 3Eilbeck J C,McGuire G R.Numerical study of the regularized long-wave equation Ⅰ: Numerical methods〔J〕[].Journal of Computational Physics.1975
  • 4Bona J L,Pritchard W G,Scott L R.Solitary-wave interaction〔J〕[].The Physics of Fluids.1980
  • 5Zabusky H J,Kruskal M D.Interaction of solitons in a collisionless plasma and the recurrence of initial states〔J〕[].Physical Review Letters.1965
  • 6Abdulloev Kh O,Bogolubsky I L,Makhankov V G.One more example of inelastic soliton interaction〔J〕[].Physics Letters.1976

同被引文献23

  • 1周光辉,朱久运.孤立子──一种非线性效应[J].大学物理,1994,13(4):32-35. 被引量:4
  • 2刘林,廖新浩,赵长印,王昌彬.辛算法在动力天文中的应用(Ⅲ)[J].天文学报,1994,35(1):51-66. 被引量:14
  • 3Peregrine D H. Calculations of the development of an undular bore[J]. J. Fluid Mech., 1966, 25: 321-330.
  • 4Benjamin T B, Bona J L and Mahony J J. Model Equation for Long Waves in Nonlinear Dispersive Systems[J]. Philos. Trans. R. Soc. London, Ser. A, 1972, 272: 47-78.
  • 5Olver P J. Euler Operators and Conservation Laws of the BBM Equation[J]. Math. Proc. Camb. Phil. Soc., 1979, 85: 143-160.
  • 6Eilbeck J C and McGuire G R. Numerical Study of the Regularized Long-Wave Equation l[J]. Numerical Methods, J. Comp. Phys., 1975, 19: 43-57.
  • 7Eilbeck J C and McGuire G R. Numerical Study of the Regularized Long-Wave Equation 2[J]. Interaction of Solitary waves, J. Comp. Phys., 1977, 23: 63-73.
  • 8邬华谟 郭本瑜.KdV-Burgers-RLW方程的高精度差分格式.计算数学,1983,1:90-98.
  • 9Abdulloev Kh O, Bogolubsky I L and Makhankov V G. Phys. Lett., 1976, 56 A: 427-428.
  • 10Bona J L, Pritchard W G and Scott L R. Solitary-wave interaction[J]. Phys. Fluid, 1980, 23: 438-441.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部