摘要
针对主动表观模型(AAM)在表情识别中特征点定位不够精确以及特征数据存在冗余性的问题,本文通过对AAM拟合时初始模型的自动调整,提高了定位准确度,使获取的特征更能有效的反映表情的变化;用二次互信息解决特征矢量选择问题,减少了特征维数,再构造支持向量机(SVM)分类器进行表情识别。实验于CAS-PEAL人脸表情库的结果显示本文采用的方法能有效地提高人脸表情识别性能,最高识别率为83·33%。
To solve the problem of imprecise positioning of feature point and of the feature data redundancy in facial expression recognition by active appearance models(AAM), the automatic adjustment of initial model for AAM fitting is proposed in this paper. The specific aims are to improve the precision of positioning and to more effectively reflect the variation of expressions by acquired features. The problem of feature selection is resolved by adopting quadratic mutual information and reducing the feature dimens...
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2008年第3期510-514,共5页
Journal of Biomedical Engineering
关键词
人脸表情识别
主动表观模型
特征向量
二次互信息
支持向量机
Facial expression recognition Active appearance models(AAM) Feature vector Quadratic mutual information Support vector machine(SVM)