摘要
独立分量分析(ICA)算法是一种运用统计方法,从一系列标准信号中提取独立成分的技术。由于脑电信号是由若干相对独立的成分组成,所以运用ICA算法来处理脑电信号受到广泛关注。本文介绍了一种新型的约束独立分量分析(cICA)算法,它能解决FastICA算法在源信号分离时输出排列无序性的问题。并通过实验表明,它在脑电伪差分离时可减少人工处理的影响,且具有良好的稳健性与较快的收敛速度。
Independent component analysis (ICA) is a statistic technique which extracts independent components from a set of standard signals. Since Electroencephalogram (EEG) signals are the mixture of several relatively independent sources, ICA has attracted extensive attention in the field of EEG processing. In this paper, a new Constrained ICA(cICA) algorithm is introduced, it would solve the problem of orderless output when FastICA algorithm is used. The experiment results testify that the cICA algorithm can redu...
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2008年第3期497-501,共5页
Journal of Biomedical Engineering
关键词
独立分量分析
约束独立分量分析(cICA)算法
脑电图信号
伪差分离
Independent component(ICA)analysis Constrained ICA(cICA) algorithm Electroencephalogram(EEG) signals Artifacts removing