期刊文献+

焦磷酸盐微晶玻璃对β-磷酸三钙生物陶瓷的抗弯强度及生物活性的影响 被引量:1

INFLUENCE OF PYROPHOSPHATE GLASS ON THE BENDING STRENGTH AND BIOACTIVITY OF BETA-TRICALCIUM PHOSPHATE BIOCERAMIC
下载PDF
导出
摘要 通过熔融法制备组成为Na2O-MgO-CaO-P2O5的基础玻璃,在800℃进行热处理,得到主要组成为Na4P2O7和β-Ca2P2O7(β-calcium pyrophosphate,β-DCP)的焦磷酸盐微晶玻璃(pyrophosphate glass,PG)。将PG和β-磷酸三钙(β-tricalcium phosphate,β-TCP)按质量比为10:90混合,干压成型,烧结制得PG/β-TCP生物陶瓷。采用差热分析、X射线衍射、扫描电镜、能谱、模拟体液浸泡等方法研究了基础玻璃的析晶、PG/β-TCP生物陶瓷材料体系的相组成、力学性能和生物活性。结果表明:PG能有效提高PG/β-TCP陶瓷的抗弯强度,1 300℃烧结3 h制备的PG/β-TCP陶瓷的弯曲强度与纯β-TCP陶瓷相比,由87.4 MPa提高至113.2 MPa;同时,PG可有效改善β-TCP基体的生物活性,在模拟体液中浸泡14 d后,PG/β-TCP陶瓷表面形成Ca与P摩尔比为1.46的叶状磷灰石。 Crystal pyrophosphate glass-ceramic(PG) consisting of Na4P2O7 and β-Ca2P2O7(β-DCP) was prepared by quenching CaO-P2O5 based glass with a composition of 62P2O5-14CaO-18Na2O-6MgO in air at room temperature,followed by heat treatment at 800 ℃.The PG/ beta-tricalcium phosphate(β-TCP) ceramic was fabricated by dry pressing and subsequent sintering of the mixture of PG and β-TCP powders with a mass ratio of 10:90.The crystal composition,mechanical property and bioactivity of the PG/β-TCP material and the crystall...
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2008年第5期708-712,共5页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(50772072) 天津市自然基金(06YFJMJC02900) 上海市青年科技启明星计划(07QA14069)资助项目
关键词 焦磷酸盐玻璃 Β-磷酸三钙 力学性能 生物活性 pyrophosphate glass β-tricalcium phosphate mechanical properties biological property
  • 相关文献

参考文献15

  • 1[1]WANG Xinlong,FAN Hongsong,XIAO Yumei.Fabrication and characterization of porous hydroxyapatite/β-triealcium phosphate ceramics by microwave sintering[J].Mater Lett,2006,60:455-458.
  • 2[2]GEORGIOU G,KNOWLES J C.Glass reinforced hydroxyapatite for hard tissue surgery-part Ⅰ:mechanical properties[J].Biomaterials,2001,22:2 811-2 815.
  • 3[3]LOPES M A,MONTEIRO F J,SANTOS J D.Glass-reinforced bydroxyapatite composites:fracture toughness and hardness dependence on microstructural charsctetistics[J].Biomaterials,1999,20:2085-2090.
  • 4[4]ARYAL S,BAHADUR K,DHARMARAJ N,et al.Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nanomatrix[J].Scr Mater,2006,54:131-135.
  • 5[5]LOPES M A,SANTOS J D,MONTEIRO FJ,et al.Glass-reinforced hydroxyapatite:a comprehensive study of the effect of glass composition on the crystallography of the composite[J].J Biomed Mater Res,1998,39:244-251.
  • 6[6]SUCHANEK W,YASHIMA M,YOSHLMURA M.Hydroxynpatite ceramics with selected sintering additives[J].Biomatorials,1997,18:923-933.
  • 7[7]SALIH V,GEORGIOU G,KNOWLES J C.Glass reinforced bydroxyapatite for hard tissue surgery-part Ⅱ:in vitro evaluation of bone cell growth and function[J].Biomaterials,2001,22:2 817-2 824.
  • 8[8]MASTROGIACOMO Maddalena,SCAGLIONE Silvia,MARTINETH Robert.Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics[J].Biomaterials,2006,27:3 230-3 237.
  • 9[9]FERRAZ M P,KNOWLES J C,OLSEN I,et al.Flow cytometry analysis of effects of glass on response of osteosarcoma cells to plasma-sprayed hydroxyapatite/CaO-P2O5 coatings[J].J Biomed Mater Res,1999,47:603-611.
  • 10[10]FERRAZ M P,KONWLES J C,OLSEN Let al.Flow cytometry analysis of the effects of pre-immersion on the biocompatibility of lass-reinforced hydroxyapatite plasma-sprayed coatings[J].Biomaterials,2002,21:813-820.

同被引文献11

  • 1修稚萌,崔建东,白华,孙旭东.羟基磷灰石/钛网状复合材料的制备及其性能[J].东北大学学报(自然科学版),2007,28(6):821-824. 被引量:8
  • 2Kannan S, Ventura J M, Ferreira J M F. Aqueous precipitation method for the formation of Mg-stabilized β- tricalcium phosphate: an X-ray diffraction study [ J ]. Ceramics International, 2007,33(4) :637 - 641.
  • 3Cheng K, Zhang S, Weng W, et al. The interfacial study of sol gel derived fluoridated hydroxyapatite coatings β. Suface & Coating Technology, 2005,198 ( 1/2/3 ) : 242-246.
  • 4Zhang S, Zeng X, Wang Y, et al. Adhesion strength of solgel derived fluorinated hydroxyapatite coatings [J]. Surface & Coating Technology, 2006,200 (22/23) : 6350 - 6354.
  • 5Wang Y, Zhang S, Zeng X, et al. In vitro behavior of fluoridated hydroxyapatite coatings in organic-containing simulated body fluid[J]. Materials Science and Engineering C, 2007,27(2) :244 - 250.
  • 6Serre C M, Papillard M, Chavassieux P, et al. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts [J ]. Journal of Biomedical Materials Research, 1998,42 (4) :626 - 633.
  • 7Izabela G, Zygmunt M, Bogustaw M. The role of bivalent metals in hydroxyapatite structures as revealed by molecular modeling with the hyperchem software [ J ]. Journal of Biomedical Materials Research A, 2005,75 (4) : 788 - 793.
  • 8Mayer I, Schlam R. Magnesium-containing carbonate apatites[J]. Journal of Inorganic Biochemistry, 1997,66 (1):1-6.
  • 9Bigi A, Falini G, Foresti E, et al. Magnesium influence on hydroxyapatite crystallization [ J]. Journal of Inorganic Biochemistry, 1993,49(1):69-78.
  • 10Tkalcec E, Saner M, Nonninger R, et al. Sol gel-derived hydroxyapatite powders and coatings [J ]. Journal of Materials Science, 2001,36(21 ) :5253 - 5263.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部