摘要
本文讨论了一类Rosenbrock方法求解比例延迟微分方程,y′(t)=λy(t)+μy(qt),λ,μ∈C,0<q<1的数值渐近稳定性。
This paper is concerned with the asymptotic stability of the Rosenbrock methods for the pantograph equation y′(t)=λy(t)+μy(qt),λ,μ∈C,0<q<1.It is shown that A-stable Rosenbrock method can inherit the asymptotic stability of underlying linear equation.
出处
《数学理论与应用》
2006年第1期61-64,共4页
Mathematical Theory and Applications