期刊文献+

关于一类无限簇广义集值变分不等式

An infinite family of set-valued variational inequalitiy
下载PDF
导出
摘要 引入并研究了一类新的无限簇广义集值变分不等式,证明了这类变分不等式的解的存在性,并构造了其迭代算法,得到了由此算法产生的迭代序列的收敛性,所得结果推广和改进了已知的相应结果. A new class of infinite family of set-valued variational inequalities are introduced and studied. An iterative algorithm is constructed and an existence of solutions for this kind of variational inequalities is proved. The convergence of iterative sequences generated by the algorithm is proved. The result presented. in this paper includes some known results as special cases.
作者 程莉
出处 《西南民族大学学报(自然科学版)》 CAS 2006年第3期433-437,共5页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 无限簇 变分不等式 算法 LIPSCHITZ连续性 infinite family variational inequality algorithm Lipschitz continuity
  • 相关文献

参考文献3

  • 1王元恒.Banach空间中无限簇广义集值变分包含[J].浙江大学学报(理学版),2004,31(4):381-386. 被引量:5
  • 2[2]NADLER S B.Muliti-valued contraction mappings[J].Pacific J.Math,1969,30:475-488.
  • 3[3]BAIOCCHI C,CAPELO A.Variational and Quasi-variational Inequalities,Applications to Free Boundary Problems[M].New York:Wiley & Sons,1984.

二级参考文献19

  • 1NOOR M A. An implicit method for mixed variational inequalities [J]. Appl Math Lett, 1998,11 (4):109-113.
  • 2NOOR M A. Generalized multi-valued quasi-variational inequalities (Ⅱ) [J]. Comput Math Appl, 1998,35(5):63-78.
  • 3ZENG L V. Herative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasi-variational inequality [J]. J Math Anal Appl,1996,201: 180-191.
  • 4NOOR M A. Set-valued resolvent equations and mixed variational inequalities[J]. J Math Anal Appl,1998,220:741-759.
  • 5BARBU V. Nonlinear Semigroups and Differential Equations in Banach Spaces [M]. Leyden Nehterland:Noord-hoff Iinternet Publ, 1976.
  • 6郭大均.Hammerstein型非线性积分方程的固有值[J].数学学报,1977,20(2):99-108.
  • 7NOOR M A. Generalized set-valued variatiional inclusions and resolvent equations[J]. J Math Anal Appl,1998,228:206-220.
  • 8CHANG S S,CHO Y J, LEE B S,et al. Generalized set-valued variational inclusions in Banach spaces[J].J Math Anal Appl, 2000,246:409-422.
  • 9CHANG S S. Set-valued variational inclusions in Banach spaces [J]. J Math Anal Appl, 2000,248: 438-454.
  • 10CHANG S S, KIM J K,KIM K H. On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach space[J]. J Math Anal Appl, 2002,268: 89-108.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部