摘要
用微分方程定性理论结合数值模拟方法研究了一类非线性四阶波动方程的纽结波.在r<0的条件下,首先把波动方程转换成一个常微平面系统,然后用定性理论讨论该平面系统的奇点性质,画出该系统的相图分支,根据相图找到了纽结波的存在条件,并求出了纽结波的解.最后用数学软件Maple对行波方程进行数值模拟,得到纽结波的平面模拟图.数值模拟进一步验证了理论分析结果.
The qualitative theory of ordinary differential equations and numerical simulation method are employed to investigate the kink waves of a nonlinear quartic equation.Under the condition r < 0,the wave equation is changed to a planar system,the properties of the singular points are studied,and the bifurcation phase portraits are drawn.The parameter conditions that the kink waves appear are found,and their solutions are obtained.Finally,the planar graphs of the traveling wave equation are simulated by using mathematical software MAPLE.The numerical simulation and qualitative results are identical.
出处
《西南民族大学学报(自然科学版)》
CAS
2006年第4期631-635,共5页
Journal of Southwest Minzu University(Natural Science Edition)
基金
国家自然科学基金资助项目(10261008)
关键词
非线性四阶方程
定性理论
异宿轨
纽结波
nonlinear quartic equation
qualitative theory
heteroclinic orbit
kink wave