期刊文献+

基于两阶段卡尔曼滤波的多传感器信息融合 被引量:3

Multi-sensor information fusion based on two-stage Kalman filter
下载PDF
导出
摘要 在目标跟踪中,对目标运动建模时,常会遇到系统状态方程存在偏差问题.传统的信息融合方法总是假设系统状态方程中的偏差为常量,很少涉及偏差为随机变量的情形,但实际建模中常会出现这类问题.针对此问题,提出了基于两阶段卡尔曼滤波的多传感器信息融合方法.这种方法可以有效地消除系统状态方程在建模存在随机偏差时给信息融合所带来的影响,从而提高了融合精度. We often meet with the problem when we construct the state models in the presence of random bias in target tracking.The traditional multi-sensor information fusion method is based on the assumption that the bias of state models is non-random.Little research is made into the problem of constructing the system models in the presence of random bias.Considering this problem,we describe an information fusion method based on two-stage state estimation in the presence of random bias for multi-sensor information fusion systems.This method can solve the problem effectively and increase the precision of fusion.
出处 《西南民族大学学报(自然科学版)》 CAS 2006年第4期788-793,共6页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 信息融合 分层估计 两阶段卡尔曼滤波 航迹融合 information fusion hierarchical estimation two-stage Kalman filter track fusion
  • 相关文献

参考文献4

  • 1何友,彭应宁.多级式多传感器信息融合中的状态估计[J].电子学报,1999,27(8):60-63. 被引量:26
  • 2[2]ALOUANI A T,XIA P,RICE T R,BLAIR W D.On the Optimality of Two-Stage State Estimation in the presence of Random Bias[J].IEEE Trans on Automat.Contr,1993,AC:1279-1282.
  • 3[3]FREIDLAND B.Treatment of bias in recursive filtering[J].IEEE Trans Automat Contr,1969,AC-14.
  • 4[4]IGNAGNI M B.Separate-bias Kalman estimator with bias state noise[J].IEEE Trans Automat Contr,1990,35(3):727-731.

二级参考文献13

共引文献25

同被引文献19

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部