摘要
基于Hamilton原理和高阶模型理论,建立了旋转刚柔耦合智能结构的动力学模型,并通过滑模变结构控制(SMC)对结构的振动进行控制.通过一阶近似模型理论考虑了结构轴向、横向和转角相互间的耦合作用,即考虑了柔性梁和智能材料的几何非线性.利用有限元方法得到了考虑离心刚化效应的有限维模型.利用滑模控制方法对结构的振动进行抑制.滑模面通过最优化方法得到.数值仿真结果表明滑模控制方法有效地控制了带有参数扰动的旋转柔性智能结构振动.
Based on Hamilton's principle, the fully coupled nonlinear dynamic model for a rotating rigid-flexible smart structure with a tip mass is established using a higher order model, and the vibration of this system will be depressed by the sliding mode control (SMC) method. The coupled effects of the axial, transverse displacements and rotation angle are considered by means of the first-order approximation coupling (FOAC) model theory, which considers the geometrically nonlinear effects on the piezoelectric materials and structures. The finite-dimensional model, considering the centrifugal effect, is obtained by finite element method (FEM). Then, SMC is used to actively control the structural vibration of the rotating flexible smart structure. The sliding surface is determined by the linear quadratic regulator (LQR) approach. The numerical simulation shows that the proposed SMC approach is effective for the rotating flexible smart structure in vibration control with parameter perturbation uncertainties.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2006年第z1期52-59,共8页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(10572119).
关键词
柔性结构
滑模控制
智能材料
有限元法
flexible structure
sliding mode control
smart material
finite element method