期刊文献+

哈密顿线图中2-因子的分支数 被引量:1

The Components of 2-factors in Hamiltonian Line Graphs
下载PDF
导出
摘要 设G为一简单图,本文证明了:如果G的线图L(G)为哈密顿的,且在G中存在两个顶点u、υ∈V(G),满足d(u)+d(v)f(n)(f(n)为整数),那么L(G)中存在k个分支的2-因子,其中1 k﹂f(n4)-2」,且说明了当f(n)n时所给的结果为最好可能的,这个结果是对R.J.Gould和E.A.Hynds[4]的结果的推广和加强. Let be a simple graph,In this paper the author showed that: If L(G) which is the Line Graph of G is Hamiltonian and there exist two vertices u,v∈V(G) in G,such that d(u)+d(v)f(n)(f(n) is a positive integer),then L(G) has a 2-factor with k components(1kf(n)-24) and this result is best possible when f(n)n.This result is an extension and strength of R.J.Gould and E.A.Hynds[4]'s result.
出处 《华东交通大学学报》 2006年第4期127-129,共3页 Journal of East China Jiaotong University
基金 江西省自然科学基金资助项目(0312011)
关键词 线图 2-因子 哈密顿 line graph 2-factors hamilton
  • 相关文献

参考文献6

  • 1[1]J.A Bondy and U.S.R Murty "Graph Theory with Applications" MacMillan,London and Elsevier Amsterdam,1976
  • 2[2]F.Harrary and C.st.J.A Nash-Williams,"On eulerian and Hamiltonian graphs and line graphs",Canadian Mathematical Bulletin PP.701-710 1965
  • 3[3]R.J Gould,E.A Hynds,"A Note on Cycles in 2-factors of line Graphs",Bulletin of the Institute of Combinatorics and its Applications.Vol 26 PP 46-48,1999
  • 4[4]R.J Gould,E.A Hynds "A Note on 2-factors in Line Graphs" Bulletin of the Institute of Combinatorics and its Applications.Accapted for published
  • 5[5]R.Brualdi,R.Shanny,"Hamiltonian Line Graphs" Journal of Graph Theory.Vol.5,PP 307-314,1981
  • 6[6]S.Brandt,G.Chen,R.J Faudree,R.J Gould,L.Lesniak "On the Number of Cycles in a 2-factor",Journal of Graph Theory,Vol.24,No.2,PP.165-173,1997 The components of 2-factors in Hamiltonian Line Graphs

同被引文献10

  • 1刘瑞富,刘展鸿,熊黎明.线图中2-因子分支数的一些结果[J].江西师范大学学报(自然科学版),2006,30(5):485-486. 被引量:1
  • 2Bondy J A,Murty U S R. Graph theory with applications[ M]. New York: Elsevier, 1976.
  • 3Harrary F, Nash-Williams C st J A. On eulerian and hamiltonian graphs and line graphs[J] .Canadian Mathematical Bulletin, 1965,8:701- 710.
  • 4Gould R J, Hynds E A. A note on cycles in 2-factors of line graphs[ J ]. Bulletin of the Institute of Combinatorics and its Applications, 1999, 26:46-48.
  • 5Brualdi R, Shanny R. Hamiltonian line graphs[J] .Journal of Graph Theory, 1981,5:307-304.
  • 6Gould R J,Hynds E A.A note on 2-factors in line graphs[J] .Bulletin of the Institute of Combinatofics and its Applications,2006,47:58- 62.
  • 7Nebesky L. A theorem on Hamiltonian line graphs[ J ]. Comment Math Univ Carolinae, 1973,14:107-112.
  • 8Nunokawa S, Owa M, Srivastava H M. A certain class of multivalent Functions [ J ]. Appl Math Lett, 1997,10: 7-10.
  • 9Benhocine J C, Fouquet J L. The Chvatal-Erdos condition and pancyclic line graphs[J]. Discrete Math, 1987,66:21-26.
  • 10Douglas B, West. Introduction to graph theory [ M ] ( Second Editon). Beijing: China Machine Press, 2004.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部