期刊文献+

含铬废物焚烧中CrOH+H→CrO+H_2反应机理研究

MECHANISM STUDY ON CrOH+H→CrO+H_2 IN Cr-CONTAINING WASTE INCINERATION
下载PDF
导出
摘要 本文用量子化学密度泛函UB3LYP方法,在6-311++G**基组水平上研究了含铬固体废物焚烧过程中CrOH+H→CrO+H2的微观反应机理。在相同理论水平上用内禀反应坐标理论(IRC)对最小能量途径进行计算,并进行了详细的讨论。分别计算了正、逆反应的活化能。采用经典过渡态理论计算了正、逆反应的反应速率常数。 The reaction CrOH+H→CrO+H2 existed in the chromium-containing waste incineration process has been studied at the UB3LYP/6-311++G** theory level of quantum chemistry. The minimum-energy path was calculated by the intrinsic reaction coordinate theory (IRC) at the above theory level, then the reaction path along the IRC was discussed. The forward and reverse reaction potential barriers were also calculated, respectively. The forward rate constants and the reverse rate constants were obtained by the traditional transition-state theory.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2006年第z2期155-158,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.50006005) 国家自然科学基金项目(No.50476010)联合资助
关键词 内禀反应坐标理论(IRC) 速率常数 chromium the intrinsic reaction coordinate theory (IRC) rate constants
  • 相关文献

参考文献7

  • 1[1]William P L,et al.Formation and Destruction of Hexavalent chromium in a Laboratory Swirl Flame Incinerator.Combustion Science and Technology,1996,116,117:479-498
  • 2吕雪峰,于溯源.铬/氢/氧燃烧火焰中的热力学参数计算和平衡分析[J].工程热物理学报,2005,26(2):354-356. 被引量:5
  • 3[3]Kashireninov O E,Fontijn A.Modeling of ChromiumCombustion in Incineration:Thermochemistry of Cr-C-H-Cl Combustion in Air and Selection of Key Reactions.Combustion and Flame,1998,113(4):498-506
  • 4[4]Guo Bing,Kennedy Ian M.The Impact of Chlorine on Chromium Speciation in a laminar Diffusion Flame.Combustion and Flame,2001,126(1-2):1557-1568
  • 5[5]Kashireninov O E,Fontijn A.Modeling of Chromium Combustion in Incineration:Thermochemistry of Cr-C-H-Cl Combustion in Air and Selection of Key Reactions.Combustion and Flame,1998,113(4):498-506
  • 6[6]Frisch M J,et al."GAUSSIAN",Inc.,Pittsburgh PA,1998
  • 7[7]Becke A D.Density-Functional Thermochemistry.Ⅲ.the Role of Exact Exchange,J.Chem.Phys.,1993,98:564

二级参考文献9

  • 1Sax N I, Lewis R J Sr. Hazardous Chemicals Desk Reference, Van Nostrand Reinhold. New York, 1987.
  • 2Cieslak-Golonka M. Toxic and Multagenic Effects of Chromium (Ⅵ). Polyhedron, 1996, 15(21): 3667-3689.
  • 3Ebbinghaus B B. Thermodynamics of Gas Phase Chromium Species: The Chromium Oxides, the Chromium Oxyhydroxides, and Volatility Calculations in Waste Incineration Processes. Combustion and Flame,1993, 93(1-2): 119-137.
  • 4Malcolm W, Chase Jr. NIST-JANAF Thermodynamic Tables. Washington D C: American Chemical Society;Woodbury N Y: American Institute of Physics for the National Institute of Standards and Technology, 1998.
  • 5Binnewies M, Milke E. Thermodynamic Data of Elements and Compounds. Weinheim; New York: Wiley-VCH,1999.
  • 6Lehrstuhl, et al. Thermodynamic Properties of Inorganic Materials, Subvolume A. Pure Substance. Berlin,Springer, 1999.
  • 7Xuefeng lu, Jinling Li, Suyuan Yu. In: Proceedings of the 4^th Asia-Pacific Conference on Combustion. Nanjing,2003. 207-210.
  • 8Frisch M J, et al. GAUSSIAN. Inc. Pittsburgh PA, 1998.
  • 9Reynolds W C. STANJAN - Interactive Computer Programs for Chemical Equilibrium Analysis. Dept. of ME.Eng., Stanford University, 1990.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部