期刊文献+

基于鲁棒支持向量机的非线性系统辨识

Nonlinear systems identification based on robust support vector machine
下载PDF
导出
摘要 支持向量机(SVM)是一种基于结构风险最小化原理的学习技术,该文利用鲁棒支持向量机对非线性系统进行黑箱建模,首先推导出鲁棒支持向量机的基本理论,给出了对偶优化问题,并结合一个具体的例子进行了仿真实验,结果验证了所提出的方法的正确性和有效性。 Support vector machine is a learning technique based on the structural risk minimization principle, This paper uses robust support vector machine to model nonlinear dynamical systems, firstly deduce the theory of robust support vector machine, gives its dual optimization problem. A concrete simulation example is taken to demonstrate the proposed approach's correctness and effectiveness.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z3期2279-2280,共2页 Chinese Journal of Scientific Instrument
关键词 支持向量机 统计学习理论 非线性系统辨识 support vector machine statistical learning theory nonlinear systems identification
  • 相关文献

参考文献5

  • 1[1]M.Norgaard,O.Ravn,N.K.Poulsen.NNSYSID and NNCTRL tools for system identification and control with neural networks[J].Computing & Control Engineering Journal.2001,12(1):29-36.
  • 2[2]J.H.Xu,D.W.Ho.Adaptive wavelet networks for nonlinear system identification[C].American Control Conference,1999.Proceedings of the 1999,5:3472-3473.
  • 3[3]A.Smola.Regression estimation with support vector learning machines[D].Master's thesis,Tech.University of Mumchen,1996.
  • 4[4]T.Poggio,F.Girosi.Networks for approximation and learning[J].Proceedings of the IEEE,1990,78(9):1481-1497.
  • 5王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部