摘要
支持向量机(SVM)是一种基于结构风险最小化原理的学习技术,该文利用鲁棒支持向量机对非线性系统进行黑箱建模,首先推导出鲁棒支持向量机的基本理论,给出了对偶优化问题,并结合一个具体的例子进行了仿真实验,结果验证了所提出的方法的正确性和有效性。
Support vector machine is a learning technique based on the structural risk minimization principle, This paper uses robust support vector machine to model nonlinear dynamical systems, firstly deduce the theory of robust support vector machine, gives its dual optimization problem. A concrete simulation example is taken to demonstrate the proposed approach's correctness and effectiveness.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2006年第z3期2279-2280,共2页
Chinese Journal of Scientific Instrument
关键词
支持向量机
统计学习理论
非线性系统辨识
support vector machine statistical learning theory nonlinear systems identification