期刊文献+

自组织映射神经网络与VIP客户识别研究

Recognizing YIPs based on self-organizing map neural network
下载PDF
导出
摘要 根据著名的“帕雷托80/20原理”,20%的客户(VIP客户)贡献了公司80%的利润。因此,准确地识别VIP客户对确保企业的收益是至关重要的。本文试图运用自组织映射神经网络聚类分析方法从海量的客户数据中准确地识别VIP客户,并针对VIP客户的消费行为特点提出了一系列相应的营销策略,以规避企业丢失VIP客户的风险、增加VIP客户的忠诚度和使得企业收益最大化。本论文采用自组织映射神经网络聚类识别VIP客户是一种非常有意义的尝试和创新。 This paper mainly expatiates on the principle and application of SOM (i. e. Self-Organizing Map) Neural Networks clustering algorithm in recognizing VIPs from a huge database of customers on the Internet. Through SOM Neural Networks clustering algorithm, VIPs can be clustered and recognized objectively and scientifically, and this will help enterprises avoid the risk of taking the uniform-service strategy for all the customers or taking the subjective and unscientific rank-service strategy to lost VIP customers. According to the Pareto 80/20 Principle: 20% of all the customers (namely VIPs) for an enterprise contribute 80% of all its profit, scientifically recognizing VIPs based on SOM Neural Network is a very significant and comparatively novel method. In this paper, the author hopes eagerly that her study on recognizing VIPs can help enterprises increase the loyalty of VIPs and maximize the profit of enterprises.
作者 黄丽娟
机构地区 江西财经大学
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z3期2300-2301,共2页 Chinese Journal of Scientific Instrument
基金 论文的课题背景:2005年江西省高等学校教学研究省级立项课题<电子商务模式下的物流管理> 江西省高等学校教学研究省级立项课题<组网技术教学与实践的改革研究>
关键词 自组织 识别 重要客户 神经网络 self-organization recognition VIP neural network
  • 相关文献

参考文献3

  • 1[1]Kohonen Teuvo,The self-organizing map[J].Neurocomputing,2004,21(1-3):1-6.
  • 2[2]Simon Haykin,A comprehensive foundation[M].World publishing house.,2004.
  • 3[3]FeiSi Science Research Center,Neural Network theory and Realization in Matlab 7[M].BeiJing:Publishing House of Electronics Industry,2005:165-178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部