期刊文献+

统计数据库中保持隐私的数据扰动方法的研究 被引量:3

Basic Research on Data Perturbation Methods for Privacy in Statistical Database
下载PDF
导出
摘要 随着统计数据库的广泛应用和不断发展,统计数据库中隐私问题显得越来越重要.针对这方面问题,目前已经出现了许多不同的统计数据库的安全控制方法.数据扰动方法是其中一种相对较好的安全控制方法.它主要是通过添加一种噪音矢量对原数据进行修改,从而达到秘密数据保护的目的.主要综述了近年来出现的各种数据扰动方法,对它们各自的特点作了一定的比较分析.并对EGADP方法的思想从数学理论方面进行了推导验证,这点有助于开拓对数据扰动新方法研究的思路.最后就数据扰动方法的相关问题作了总结和展望.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第z3期289-294,共6页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2002AA141091)
  • 相关文献

参考文献12

  • 1[1]Michael A Palley.Security of statistical database-compromise through attribute correlational modeling.In:Proc of the 2nd Int'l Conf on Data Engineering.Los Alamitos,CA:IEEE Computer Society Press,1986.67-74
  • 2[2]Nabil R Adam,John C Worthmann.Wortmann.Security-control methods for statistical databases:A comparative study.ACM Computing Surveys(CSUR),1989,21(4):515-556
  • 3[3]Dorothy E Denning.A security model for the statistical database problem.In:Proc of the 2nd Int'l Workshop on Statistical Database Management,Los Altos,USA,1983
  • 4[4]Ronald J Brachman,Tom Khabaza,Willi Kloesgen,et al.Mining business databases.Communications of the ACM,1996,39(6):42-48
  • 5[5]Krishnamurty Muralidhar,Rahul Parsa,Rathindra Sarathy.A general additive data perturbation method for database security.Management Science,1999,45(10):1399-1415
  • 6[6]Rick L Wilson,Peter A Rosen.Protecting Data through Perturbation Techniques:The impact on knowledge discovery in databases.Journal of Database Management,2003,14(2):14-26
  • 7[7]J F Traub,Y Yemini,H Wozniakowski.The statistical security of a statistical database.ACM Trans on Database System.1984,9(4):672-679
  • 8[8]J J Kim.A method for limiting disclosure in microdata based on random noise and transformation.In:Proc of the Section on Survey Research Methods.1986.303-308
  • 9[9]Patrick Tendick,Norman Matloff.A modified random perturbation method for database security.ACM Trans on Database Systems.1994,19(1):47-63
  • 10[10]Krishnamurty Muralidhar,Rathindra Sarathy.An enhanced data perturbation approach for small data sets.Decision Sciences,2005,36(3):513-529

同被引文献30

  • 1罗文俊,李祥.多方安全矩阵乘积协议及应用[J].计算机学报,2005,28(7):1230-1235. 被引量:34
  • 2Vaidya Jaideep, Yu Hwanjo, Jiang Xiaoqian. Privacy-preserving SVM classification [J]. Knowledge and Information Systems, 2008, 14(2): 161-178.
  • 3Yu Hwanjo, Vaidya Jaideep, Jiang Xiaoqian. Privacy-preserving SVM classification on vertically partitioned data [C] //Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2006:647-656.
  • 4Verykios V S, Bertino E, Fovino I N, et al. State-of-the-art in privacy preserving data mining [C]//SIGMOD Record. New York: ACM, 2004: 50-57.
  • 5A. grawal D, Aggarwal C C. On the design and quantification of privacy preserving data mining algorithms [C] //Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symp on Principles of Database Systems. New York: ACM, 2001: 247-255.
  • 6Goethals B, Laur S, Lipmaa H, et al. On private scalar product computation for privacy preserving data mining [C]//Proc of the 7th Int Conf on Information Security and Cryptology(ICISC 2004). Berlin: Springer, 2004:104-120.
  • 7Aggarwal C C, Yu P S. A condensation approach to privacy preserving data mining [C]//Advances in Database Technology(EDBT 2904). Berlin: Springer, 2004:183-199.
  • 8Yu Hwanjo, Jiang Xiaoqian, Vaidya Jaideep. Privacy preserving SVM using nonlinear kernels on horizontally partitioned data [C] //Proc of the 2006 ACM Syrup on Applied computing. New York: ACM, 2006:603-610.
  • 9Lanckriet G R G, Ghaoui L El, Bhattacharyya C, et al. A robust minimax approach to classification [J]. The Journal of Machine Learning Research, 2003, 3(12): 555-582.
  • 10Huang K, Yang H, King I, et al. The minimum error minimax probability machine [J]. The Journal of Machine Learning Research, 2004, 5(10) : 1253-1286.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部