摘要
基于一种新的二阶全非线性Boussinesq方程,采用预测-校正格式的有限差分法对该方程进行离散,建立了数值模型。模型中通过"狭槽法"来处理波浪在岸线处的动边界条件,采用涡粘模型来模拟波浪破碎引起的能量耗散。为了验证数值模型的适用性,模拟了斜坡地形上的波浪破碎和爬高。从数值结果和试验结果的比较上看,该模型可以很好地模拟近岸波浪场的实际问题。
In this paper a new form of second-order fully nonlinear Boussinesq wave equations is used to establish a numerical wave model,which is dispersed by predictor-corrector finite difference method.In the numerical model a 'narrow slot'method is adopted to simulate mobile shore line and an eddy viscosity method to simulate wave breaking.In order to verify the numerical model,wave runup and breaking are simulated on a slope bed.By contrasting numerical results and test results,the model can simulate near-shore wave well.
出处
《港工技术》
北大核心
2006年第4期5-7,共3页
Port Engineering Technology
基金
国家自然科学基金资助项目(40276030)
国防专题资助项目(703-02-02-01)