期刊文献+

用一种全非线性Boussinesq方程模拟斜坡上的波浪破碎和爬高

Using A New Form of Second-order Fully Nonlinear Boussinesq Wave Equations to Simulate Wave Breaking and Runup on A Slope Bed
下载PDF
导出
摘要 基于一种新的二阶全非线性Boussinesq方程,采用预测-校正格式的有限差分法对该方程进行离散,建立了数值模型。模型中通过"狭槽法"来处理波浪在岸线处的动边界条件,采用涡粘模型来模拟波浪破碎引起的能量耗散。为了验证数值模型的适用性,模拟了斜坡地形上的波浪破碎和爬高。从数值结果和试验结果的比较上看,该模型可以很好地模拟近岸波浪场的实际问题。 In this paper a new form of second-order fully nonlinear Boussinesq wave equations is used to establish a numerical wave model,which is dispersed by predictor-corrector finite difference method.In the numerical model a 'narrow slot'method is adopted to simulate mobile shore line and an eddy viscosity method to simulate wave breaking.In order to verify the numerical model,wave runup and breaking are simulated on a slope bed.By contrasting numerical results and test results,the model can simulate near-shore wave well.
出处 《港工技术》 北大核心 2006年第4期5-7,共3页 Port Engineering Technology
基金 国家自然科学基金资助项目(40276030) 国防专题资助项目(703-02-02-01)
关键词 全非线性Boussinesq方程 波浪破碎和爬高 数值模型 斜坡 fully nonlinear Boussinesq wave equations wave breaking and runup numerical model slope bed
  • 相关文献

参考文献5

  • 1[1]Peregrine,D.H..Long waves on a beach[J].Journal of Fluid Mechanics,1967,27(4):815-827.
  • 2[2]Kennedy,A.B.,Kirby,J.T.,Chen,Q.and Dalrymple.A..Boussinesq-type equations with improved nonlinear behavior[J].Wave Motion,2001,(33):225-243.
  • 3[3]Zelt,J.A..The run-up of nonbreaking and breaking solitary waves[J].Coastal Engineering,1991,(15):205-245.
  • 4[4]Wei,G.and Kirby,J.T..Time-dependent numerical code for extended Boussinesq equations[J].Journal of waterway,Port,Coastal and Ocean Engineering,1995,(121):251-263.
  • 5[5]Mase,H..Frequency down-shift of swash oscillation compared to incident waves[J].Hydr.Res.,Delft,The Netherlands,1995,(33):397-411.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部