期刊文献+

高质量保形三角网格简化算法 被引量:3

High Quality and Shape Preserving Triangular Mesh Decimation
下载PDF
导出
摘要 网格简化算法在多分辨率模型显示、三角网格模型重构、网络传输等领域应用广泛,但是目前的简化算法简化后的网格,经常会出现极大、极小、狭长的三角片,质量不高。在基于QEM(QuadricErrorMetric)简化方法的基础上,提出了在点对折叠代价中引入折叠点对关联形状因子、法向量的夹角因子、边长的非线性加权因子3种优化因子,并配合虚折叠回退操作,对简化过程中网格质量进行综合优化,并取得了较好的简化结果。 Triangular mesh decimation is widely used in multi-resolution model rendering, network transmission, computer animation and many other fields. Most of the existing algorithms for decimation of triangular meshes perform poorly at very low levels of detail. Abnormal triangles such as long-narrow, much larger or smaller than normal size are often introduced into the decimation results. A synthesis optimization method was proposed which considers the triangle shape, dihedral angle between two triangles which share a common edge and edge lengths in the process of calculating edge collapse costs based on QEM, and also propose a virtual edge collapse method attempting to find a local optimization. The proposed method can achieve much better regular decimation results under the condition of preserving visually important parts of the mesh details. The proposed method also has smaller memory consumption and execution time than most of the published notable algorithms.
出处 《系统仿真学报》 CAS CSCD 北大核心 2006年第z1期26-29,32,共5页 Journal of System Simulation
基金 国家高技术研究发展计划(863计划)(2005AA420240) 江苏省科技攻关项目(BE2005014) 南京市医学科技发展计划项目(ZKX0420) 南京市科技发展计划项目(200504022)
关键词 三角网格简化 优化因子 回退操作 triangular mesh decimation, optimization factor, retracing operation.
  • 相关文献

参考文献10

  • 1[1]M.Levoy,K.Pulli,B.Curless,S.Rusinkiewicz,et al.The Digital Michelangelo Mathematics Project:3D scanning of large statues.[C]//Computer Graphics (SIGGRAPH'00),2000:131-144.
  • 2赵惠芳,阮秋琦.基于二次误差测度的带属性三角网格简化算法[J].中国铁道科学,2005,26(1):78-82. 被引量:4
  • 3[3]G.Turk.Re-Tilling Polygonal Surfaces[J].Computer Graphics (SIGGRAPH'92 Proceeding),1992:55-64.
  • 4[4]J.Rossignac,P.Borrel.Multi-resolution 3D Approximation for Rendering Complex Scenes[C]//In Second Conference on Geometric Modeling in Computer Greaphics,1993:453-465.
  • 5[5]H.Hoppe,T.DeRose,T.Duchamp,et al.Mesh Optimization[C]//Computer Graphics (SIGGRAPH'93 Proceeding),1993:19-26.
  • 6[6]W.J.Schroeder,J.A.Zarge,W.E.Lorensen.Decimation of Triangel Meshes[C]//Computer Graphics (SIGGRAPH'92 Proceeding),1992:65-70.
  • 7[7]Hoppe.Progressive Meshes[C]//Computer Graphics(SIGGRAPH'96 Proceeding),1996:99-108.
  • 8[8]R.Ronfard,J.Rossignac.Full-range Approximation of Triangulated Polyhedra[C]//Computer Graphics Forum (EUROGRAPHICS'96 Proceedings),1996:67-76.
  • 9[9]M.Garland,P.S.Heckbert.Surface Simplification Using Quadric Error Metrics[C]//Computer Graphics (SIGGRAPH'97 Proceeding),1997:209-216.
  • 10[10]L.Kobbelt,S.Campagna,H.P.Seidel.A General Framework for Mesh Decimation[C]//Graphics Interface'98 Proceedings,1998:43-50.

二级参考文献9

  • 1Dehaemer Jr, Michael J. Simplification of Objects Rendered by Polygonal Approximations [J], Computer & Graphics,1991, 15 (2): 175--184.
  • 2Rossignac J, Borrel P. Multi-resolution 3D Approximation for Rendering Complex Scenes [J]. Geometric Modeling in Computer Graphics, 1993, 5 (2): 455--465.
  • 3Schroeder W, Zarge J, Lorensen W. Decimation of Triangle Meshes [A]. Computer Graphics : SIGGRAPH 1992, Proceedings 1992 [C]. Chicago: ACM Press, 1992: 65--70.
  • 4Cohen J, Varshney A, Manocha. D, et al. Simplification Envelopes [A]. Computer Graphics : SIGGRAPH 1996, Proceedings[C]. New Orleans: ACM Press, 1996: 119--128.
  • 5Cignoni P, Montani C, Rocchini C, et al. Preserving Attribute Values on Simplified Meshes by Resampling Detail Textures [J]. The Visual Computer, 1999, 15 (10): 519---539.
  • 6Erikson C, Manocha D. GAPS: General and Automatic Polygonal Simplification [A]. Proceedings of 1999 ACM Symposium on Interactive 3D Graphics [C]. Atlanta: ACM Press, 1999: 79--88.
  • 7Garland M, Heckbert P S. Simplifying Surfaces with Color and Texture using Quadric Error Metrics [A]. Proceedings of IEEE Visualization 1998 [C]. Research Triangle Park; IEEE Computer Society and ACM, 1998; 263--269.
  • 8Hoppe H. Progressive Meshes [A]. Proceedings of SIC, GRAPH 1996 [C]. New Orleans: ACM Press, 1996. 99-108.
  • 9Garland M, Heckbert P S. Surface Simplification using Quadric Error Metrics [A]. Computer Graphics : SIGGRAPH 1997, Proceedings[C]. Los Angeles: ACM Press, 1997. 209--216.

共引文献3

同被引文献30

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部