摘要
粘性量子流体动力学模型来源于物理学,具有一定的实际意义和理论价值,是半导体研究中的重要组成部分。粘性量子流体动力学模型是由电子密度,电流密度所满足的两个守恒方程和Poisson方程所组成的。一维稳定状态的粘性量子流体动力学模型是本文的研究对象。此模型在有物理意义的狄利克雷边界条件下的一个极限(Invisc id极限)的存在性是我们的研究目标。
The viscous quantum hydrodynamic model arises from physics,it is valuable not only in the research fields but also in practical using,therefore,it is a very important research content in semiconductor field.The viscous quantum hydrodynamic model are composed of two conservation equations and the Poisson equation,of the particle density and the current density.Our object is the steady-state viscous quantum hydrodynamic model in one dimension space,the margin(inviscid margin) existence in Physics on Dirichlet boundary condition is our subject.
出处
《沈阳航空工业学院学报》
2006年第4期81-82,24,共3页
Journal of Shenyang Institute of Aeronautical Engineering