期刊文献+

变分不等方程解的逼近程序

Iterative Process for Solvability of Variational Inequation
下载PDF
导出
摘要 本文研究Hilbert空间中投影方法及其对变分不等方程近似解的具误差的迭代序列:xn+1=(1-αn)xn+αnPk(xn-Txn)+un的收敛性.本文结果发展和改进了最近一些人的最新结果. The purpose of this article is to study general convergence for projection method and the approximation solvability of nonlinear variational inequation in Hilbert spaces by the iterative sequence with errors:x_(n+1)=(1-α_n)x_n+α_nP_k(x_n-Tx_n)+u_n. The results presented in this articl extend and improve some recent results.
作者 赵良才
机构地区 宜宾学院数学系
出处 《宜宾学院学报》 2005年第12期10-11,共2页 Journal of Yibin University
关键词 非线性变分不等方程 投影方法 γ-强单调映象 迭代序列 Nonlinear Variational Inequation Projection Method Strongly Monotonic Mapping Iterative Sequence
  • 相关文献

参考文献11

  • 1[1]J.C.Dunn,Convexity,Monotonicity and gradient processes in Hilbert spaces[J].J.Math.Anal.Appl,1976,(53):145-158.
  • 2[2]R.U.Verma,A class of quasivariational inequalities involving cocoercive mappings[J].Advances in Nonlinear Variational Inequualities,1999,2(2):1-12.
  • 3[3]R.U.Verma,Generalized class of partial relaxed monotonicity and its connections[J].Advances in Nonlinear Variational Inequualities,2004,7(2):155-164.
  • 4[4]R.U.Verma,Projection methods,algorithms and a new system of nonlinear variational inequalities[J].Computers Math.Appl,2001,41:1025-1031.
  • 5[5]H.Nie,Z.LIu,K.H.Kim,A system of nonlinear variational inequalities involving strongly monotone and pesudocontractive mappings[J].Advances in Nonlinear Variational Inequualities,2003,6(2):91-99.
  • 6[6]B.S.He,A new method for a class of linear variational inequalities[J].Math.Programming,1994,66:137-144.
  • 7[7]D.Kinderlehrer,G.Stampacchia,An Introduction to Variational Inequalities and their Applications[M].Academic Press,New York,1980.
  • 8[8]L.S.Liu,Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces[J].J.Math.Anal.Appl,1995,194:114-125.
  • 9[9]S.Karamardian,S.Schaible,Seven kinds of monotone maps[J].J.Optim.Theory and Appl,1990,66:37-46.
  • 10[10]E.Zeidler,Nonlinear Functional Analysis and its Applications { Ⅱ } B[M].Springer-verlag,New York,1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部