期刊文献+

Improved PSO algorithm and its application 被引量:1

Improved PSO algorithm and its application
下载PDF
导出
摘要 The mechanism of particle swarm optimization algorithm is studied, and one can draw the conclusion that the best particle found by the swarm falling into local minima is one of the main reasons for premature convergence. Therefore, an improved particle swarm optimization algorithm is proposed. This algorithm selects the best particle with roulette wheel selection method, so premature converging to local optima is avoided. At last, the improved particle swarm optimization algorithm is applied to optimization of time-sharing power supply for zinc electrolytic process. Simulation and practical results show that the global search ability of IPSO is improved greatly and optimization of time-sharing power supply for zinc electrolytic process can bring about outstanding economic benefit for plant.
出处 《Journal of Central South University of Technology》 2005年第z1期222-226,共5页 中南工业大学学报(英文版)
  • 相关文献

参考文献3

二级参考文献22

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 2[1]Hornik K,Stinchcombe M,White H.Multilayer feed-forward networks are universal approximators[J].Neural Networks,1989,2(5):359-366.
  • 3[2]Rumelhart D E,Hinton G E,Williams R J.Learning representations by back propagating errors[J].Nature,1986,323(11):533-536.
  • 4[3]Sexton R S,Dorsey R E.Reliable classification using neural networks:a genetic algorithm and backpropagation comparison[J].Decision Support Systems,2000,30(1):11-22.
  • 5[4]Yang J M,Kao C Y.A robust evolutionary algorithm for training neural networks[J].Neural Computing and Application,2001,10(3):214-230.
  • 6[5]Franchini M.Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models[J].Hydrological Science Journal,1996,41(1):21-39.
  • 7[6]Kennedy J,Eberhart R C.Particle swarm optimization[A].Proceedings of IEEE International Conference on Neutral Networks[C].Australia:IEEE,1995.1942-1948.
  • 8[7]Shi Y H,Eberhart RC.Empirical study of particle swarm optimization[A].Proceedings of IEEE International Congress on Evolutionary Computation[C].USA:IEEE,1999.6-9.
  • 9[8]Yoshida H,Kawata K,Yoshikazu F.A Particle swarm optimization for reactive power and voltage control considering voltage security assessment[J].IEEE Transaction on Power System,2000,15(4):1232-1239.
  • 10[9]Carlisle A,Dozier G.Adapting particle swarm optimization to dynamic environments[A].Proceedings of International Conference on Artificial Intelligence[C].USA:IEEE,2000.11-15.

共引文献604

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部